《植树问题》教学设计[精华15篇]
作为一名人民教师,往往需要进行教学设计编写工作,教学设计是把教学原理转化为教学材料和教学活动的计划。那么大家知道规范的教学设计是怎么写的吗?以下是小编为大家整理的《植树问题》教学设计,希望对大家有所帮助。
《植树问题》教学设计1
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册第117、118页例1、例2。
教学目标:
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。
教学重难点:
1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。
2.培养学生从实际问题中发现规律,应用规律解决问题的能力。
3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。
教学、具准备:
课件、表格、尺子等。
教学过程:
一、教学“间隔”
1.教学“间隔”的含义。
师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个“空”也可以说成4个“间隔”,5个手指之间有4个间隔,那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)
2.引入植树问题的学习。
师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是——植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。
二、自主探究 找出规律
1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?
师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?
预设:学生可能大多数对得到20棵。
师:你们的猜测正确吗?下面我们就一起想办法来验证一下。但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?
师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?
全班交流汇报。(重点让用线段图来验证的小组来说明理由。)
师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?
生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)20÷5不是等于4吗?怎么是5棵呢?多的这一棵是怎么来的?
师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。
根据学生的.回答,师填写表格:
总
长(米)
每两棵树之
间的距离
(每段长)
棵
数
间隔数
(段 数)
20
全班观察表格寻找规律。
师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)
师:对得到的这个规律有没有不同意见?
三、巩固练习
师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?
(1)基础练习。
师:请看题目,谁愿意来说一说?
A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?
A2. 如果是每隔10米栽一棵呢?(口答)
B.师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题。这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?
课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?
C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。
课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?
(2)拓展练习。
师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑。想听听它的钟声吗?
课件出示解放碑的大钟及题目。
解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?
师:请同学们独立的在练习本上完成。
小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。
四、数学文化
介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?
五、全课总结
1.通过这节课的学习你有什么收获?
2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。
《植树问题》教学设计2
一、教学内容:
人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。
二、教材目标:
1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。
2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。
3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。
三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。
四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。
五、教学准备:学习单、多媒体课件、小树和小路模型。
六、 教学过程:
(一) 问题导入:
出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?
教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”
(二)探究新知:
1.队列问题:
出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的关系,再次对应“间隔数+1”
并出示课题。
2.植树问题:
(1)体会“化繁为简”思想:
问题导入:同学们到达目的地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?
突出矛盾:数字太大,不易思考,引导学生转换较小的数。
明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)
(2)设计三种植树方案:
引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。
①学生活动,教师巡视。
②汇报、展示:
③小结:组织学生对不同方案进行命名,突出其主要特征。
教师板书:两端都种、只种一端、两端不种
(3)探究规律:
①求间隔数:
教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。
在没有植树的棵数时,探究间隔数与全长、间隔的关系。
组织学生独立思考,借助学具、线段图等形式探究规律
a:学生思考并摆学具或画线段或列算式。
b:汇报:
②探究间隔数与棵数的关系:
开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?
小组合作完成探究,活动要求:
1)自己选择适合的间隔长度,四人小组合作完成记录表。
2)小组选择一种植树方式进行探究。
3)可以借助摆学具、画线段、数手指或列算式的方式。
a:学生小组活动,教师巡视。
b:学生汇报发现规律,教师板书。
c:升华:
三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。
d:应用:
老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?
(三)巩固提升:
1.选一选:
下面每一题相当植树问题的.哪一种情况?
(1)音乐中的“五线谱”( )
(2)衣服上的纽扣( )
(3)成语“一刀两断”()
(4)自鸣钟九点报时的钟声( )
A.两端都种 ; B.只种一端; C.两端不种。
2. 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3. 小法官:
(1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )
(2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )
4.学校一条大路的一边共插了20面彩旗。
(1)如果使两面彩旗中间放一盆花,一共要放多少盆花?
(2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?
(四)课堂总结:
师:今天我们学习了什么?你有什么收获?
生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。
教学反思:
通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。
解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。
《植树问题》教学设计3
教学内容:
人教版小学数学五年级上册第106页例1。
教学目标:
1、知识与技能目标:
(1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。
(2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。
2、过程与方法目标:
(1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。
(2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。
(3)、培养学生的合作意识,养成良好的交流习惯。
3、情感态度与价值观目标:
(1)、感受数学在生活中的广泛应用。
(2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。
教学重点:
通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。
教学难点:
把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。
教学过程:
一、谜语导入。
(1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)
谁能很快说出谜底?(生口答)。
师:你思维真敏捷。
(2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?
(3)、认识间隔、间隔数。
(预设1:数字5,5个手指;数字4,4个手指缝。)
师:你观察得真认真!
师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)
(预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。
师:你懂得真多,能告诉大家什么叫做间隔吗?
生口答,师出示手的图片,板书“间隔”和“间隔数”。)
(4)、认识生活中的“间隔”。
师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。
师:想一想,生活中还有哪些地方有间隔?
生充分交流
(5)、揭示并板书课题。
师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。
二、合作探索,了解三种植树方法
1、直接出示题目:
在一条长20m的小路一边植树,每隔5m栽一棵。可以怎样栽?
师:我们可以用一条线段来表示小路的长(来时在黑板上画出线段),用这个(三角形加一竖,写在副板书上)来表示树,请大家来设计设计,看看哪个小组最能干?
2、小组交流。
师:请同学们以小组为单位,按照合作要求,完成方案。(出示合作要求) 合作要求
(1)小组内猜一猜:可以栽几棵树? (2)自己独立动手画一画;
(3)小组内说一说:你是怎样画的?
3、汇报。
师:谁来说一说,你栽了几棵树?谁还有不同的答案?
(2)师:哦,看来同学们有的栽了4棵,有的栽了5棵,还有的同学栽了3棵,咱就先请栽了5棵的同学来说说,你是怎么栽的?(追问:跟同学们详细的说一说,你是怎样画的?)
有哪些同学是4棵的?说说你是怎样栽的?
刚才听到有同学说栽了3棵,来说说你是怎样栽的? (学生评价)师:你觉得他们说的怎样?
4、三种植树方法的命名。 师:(指着第一种)像这种,在路的起点和终点都栽了树那我们就可以把它叫做“两端都栽”(板书),那像这种了,头栽尾不栽,或者尾栽头不栽,可以叫做——( 只栽一端 ),这种呢?(两端都不栽)
1、出示题目信息:一条新修的公路,全长100米,在它的.一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?
2、理解题意。
(1)、从题目中你得到了哪些数学信息?
(2)、理解题意。
师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?
题目中,“两端都栽”是什么意思?
师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。
(3)、同学们大胆猜测一下,一共要栽多少棵?
(指名生答)
(4)、提出验证。
a:师:到底哪个结论是正确的呢?我们怎么来验证一下?
b:生尝试寻求方法。
生:可以画一画图。
师:你的想法非常好,可以用一条线段代表100米长的公路,画一画图,数一数实际种了多少棵。)
(5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。
师:现在栽了多少米了?就这样一直栽到100米处吗?
(预设生:太麻烦了,浪费时间)
(6)寻求“化繁为简”的数学方法。
师:老师和你们有同感。100米的路太长了,你觉得路的总长要是多少米好了?
生尝试发表自己的想法。
(预设生:50米、20米、10米
师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)
师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,100米太长了,我们可以转化成15米栽几棵、25米栽几颗?从而找出规律。
师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?
(预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)
师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)
(二)、自主探究。
(1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。
(2)、生独立填表。
(3)、汇报交流:谁把你的结果向大家展示一下?
(师:谁和他的结果一样请举手?
师:看来大家都做得非常认真!)
师:为了便于大家观察,我把表格展示在大屏幕上。
(4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)
间隔数与棵数之间又存在什么样的关系?(课件表格下出示:间隔数o( )=棵数)。
那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?
(5)、学生独立思考,充分交流。
结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。
(6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?
学生口述答案。
师:你真了不起!
(三)、应用规律,解决问题。
(1)、出示前面的例题。
师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?
(2)、生找出正确解法。
(3)师:20表示什么意思?为什么要加1?(20表示间隔数,因为间隔数加一等于棵树,所以要加一。)
(师:你讲得太棒了!老师真心佩服你!) (4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。那么现在就请运用我们所学的知识到知识城堡一展身手吧。看哪位同学是数学闯关达人!
三、学以致用。
1.园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远? (课件配图片出示)
生独立审题,尝试在练习本上独立完成。
师提醒学生注意这里的棵树是多少?6米是什么意思?让我们解决的是什么问题?
2.在一条全长180米的街道一旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?
生独立审题,尝试在练习本上独立完成。
这道题180米表示的什么意思?6米又代表什么呢?让解决的是什么问题?如何列式计算?
3.钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?
(课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?
指名读题,理解题意。
师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)
(学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)
大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。
汇报交流,说出思路。
四、全课总结。通过今天的学习,你有什么收获?
生充分交流。
师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?那么这道提留给大家!我们将在下次课的学习中继续探究。
拓展延伸:
现在要在这条1000米长的公路的一侧安放垃圾桶(只在其中一端放或者两端都不放),每100米安放一个。一共需要多少个垃圾桶?
《植树问题》教学设计4
第二课时教学内容:
教科书第120页的内容
知识目标:
通过开放题的教学,培养学生探究数学问题的兴趣,引导学生细致严密地考虑问题;
能力目标:
让学生自己动手,自己实验,得出规律,解决生活中的实际问题。
情感目标:
通过小组合作、交流,培养学生的协作精神。
教(学)具准备:
长方形泡沫塑料板(每小组一块,正面画圆,背面画其他的封闭图形),牙签,画有长方形的练习纸。
教学过程:
一、复习铺垫
同学们,前面我们已经研究了一些植树问题,现在我这儿有三棵小树,要把它种在公路的一侧,想请你帮我想想有几种种法?
指名回答,引导学生说出棵数与段数的关系:
两端都种只种一端两端都不种
棵数=段数+1棵数=段数棵数=段数-1
请你把这个规律跟同桌说一遍;教师在黑板上贴示。
二、引入新课:
前几节课我们考虑的都是在直条线上种树,都可以找到线路的端点,可我们生活中经常会碰到在湖的四周植树,在花坛边缘种盆花
这些你能找到它的端点来吗?这就是我们今天要重点来讨论的内容封闭路线上的植树的规律
1、湖、花坛等等,它们的外围线路都是封闭的。它和不封闭路线上的植树规律是否相同呢?我们自己动手种一下就知道了。
1)、请同学们以四人小组为单位,用牙签当树苗,在泡沫塑料板的圆上种几棵数(棵树任你自己决定),边种边数:种了几棵,把圆分成了几段?
2)、学生以小组为单位操作;
3)、交流:你们小组种了几棵,把圆分成了几段?
4)、初步概括:你们发现了什么规律?(在圆形路线上植树,棵数=段数)
2、是不是每种封闭路线上的植树规律都是这样的呢?我们还要进一步研究。
1)、出示长方形空地题目
我们学校5号楼的东面有一块长方形空地,要在它的四周种树,每边种3棵,四个角上可以种也可以不种,有几种种法?
2)、四人小组讨论,并把种的方法在练习纸的长方形上表示出来(建议:公共角上的树用圆点表示,其他的用长点表示);
教师巡视指导;
3)、学生交流:说说你们小组是怎么种的?种了几棵?把长方形分成了几段?
得出:种植路线是长方形的,种植棵数与种植段数是相等的。
4)、出示教科书第120页的例3,让学生先独立思考,再讨论解决。
5)、展示不同的解决问题的方法,集体讨论判断正误
3、研究在其他封闭图形上种树:
A、你还想在什么封闭路线上种树?(指名回答)
B、学生在泡沫塑料板的各种封闭图形上种树,边种边数:种了几棵?分成了几段?
C、小组交流。
4、得出规律:在封闭路线上植树:棵数=段数(板书)
5、联系:它和非封闭路线上的哪种情况相同?
(告诉学生事物就是这样相互联系的!
6、质疑问难:大家还有什么疑问吗?
如果在不规则的封闭路线上植树,棵数和段数是否相同?
三、尝试练习:
练习第121页的做一做上的习题
学生尝试练习,交流,指名板书解题方法。
四、课堂小结。
这节课你最大的.收获是什么?
第三课时课题:围棋中的数学问题
教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。
教学目标:
1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;
2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;
3.让学生感受数学在日常生活中的广泛应用。
教学重点:从封闭曲线(方阵)中探讨植树问题。
教学难点:用数学的方法解决实际生活中的简单问题。
情感与态度目标:通过小组合作交流,培养学生认真倾听他人意见,乐于与人合作,从不同角度欣赏他人的良好心态。
教具准备:33格、44格、55格方格纸、围棋子若干粒、44格条形吹塑纸贴在地下。
课前准备:课桌围成回字形。
教学过程:
一、情境导入(课件出示)
猜谜:十九乘十九,
黑白两对手,
有眼看不见,
无眼难活久。(打一棋类名称)
[设计意图:用谜语引入,从学生的已有经验出发,激发学生的学习兴趣。培养学生良好的兴趣爱好。]
二、探索新知
1.教学每边摆放3粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放3个棋子。最外层可以摆放多少个棋子?
(2)抢答:读题后,让学生口算出答案。(学生可能会出现多种答案。)
(3)动手验证:请学生分小组按要求摆放棋子,验证刚才答案。
(4)汇报交流(着重请学生说出方法。)
可能会出现以下方法:
32+2=824=8
33-1=834-4=8直接点数。
教师表扬学生的创新摆法,并奖励智慧星。(教师随学生回答,用课件出示摆放方法。)
2.教学每边摆放4粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放4个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)游戏:让一学生当小老师,其余学生当围棋子,请小老师邀请围棋子按上题要求站在老师设计的大棋盘上。
[设计意图:这一游戏的方法,激发了学生的兴趣,不仅使学生学到了摆放方法,让每个学生参与活动,把所学知识运动到游戏中。]
(4)汇报交流(着重请学生说出方法)
教师随学生回答,用课件出示摆放方法。
(5)你们最喜欢哪种方法?为什么?
3.教学每边摆放5粒棋子的方法。
(1)课件出示围棋格子图,最外层每边能放5个棋子。最外层可以摆放多少棋子?
(2)动手操作:请学生分小组按要求摆放棋子,写出算式。
(3)汇报交流。(教师随学生回答,用课件出示摆放方法。)
(4)你们最喜欢哪种方法?和同桌说一说。
[设计意图:让每位学生都参与活动,通过抢答、验证、分析、交流等一系列活动,借助围棋盘探讨封闭曲线(方阵)中的植树问题,进一步体会数学在日常生活中的广泛应用,学生在亲身经历的过程中实现知识能力乃至生命的同步发展。]
三、总结规律
(1)师:你觉得再用棋子摆,方便吗?你能根据前面我们摆放的方法,填写下列表格,总结出规律吗?(小组合作完成)
每边放的个数最外层总数
3
4
5
6
18
你发现了什么规律:_____________________________________
(2)教学例3:出示围棋格子图。问:围棋盘的最外层每边都能放19个棋子,最外层一共可以摆放多少个棋子?
(2)总结规律::教师随着学生的回答板书:
间隔数边数=最外层的总数
(3)学生根据规律,独立完成例3。
三、运用规律
1.如果最外层每边能放100个,最外层一共可以摆放多少个棋子?
如果最外层每边能放200个,最外层一共可以摆放多少个棋子?
如果最外层每边能放300个,最外层一共可以摆放多少个棋子?
拓展思维:如果一个五边形,怎么算?一个三角形呢?(集体口答)
2.做第121页第三题
《植树问题》教学设计5
【教材分析】
本册的“数学广角”主要是渗透有关植树问题的方法,通过现实生活中的一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用这些规律来解决生活中的一些简单实际问题。
在本节课里,学生第一次接触到“植树问题”。解决植树问题的思想方法是实际生活中应用比较广泛的“复杂问题简单化”的数学方法。让学生能够理解植树问题中两端都栽的情况下数量之间的关系,并能解决生活中的一些简单实际问题。教学中,要引导学生通过观察、猜测、实验、推理等活动,初步体会植树问题的数学思想方法,感受数学的魅力。同时让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。
【学情分析】
“植树问题”原本属于经典的奥数教学内容,新课程教材把它放到了4年级下册的“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的数学思维含量和很强的探究空间,既需要教师本身的有效引领,也需要学生的自主探究。从学生的思维特点看,3 、4年级的学生仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题的过程中,逐步发现隐含于不同情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。
【教学目标】
1.通过探究发现一条线段上两端都植树问题的规律;
2.使学生经历和体验“复杂问题简单化”的解题策略和方法;
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
【重点难点】
在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。通过教学让学生理解“两端都种”情况下棵数和间隔数之间的规律,并利用规律来解决生活中的实际问题。
【教学策略】
采用自主探究式学习模式,即学生利用学具尝试动手“种树” ——探究发现规律——应用规律实践,通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法内涵。
【教学过程】
一、课前交流,创设情境
(播放树木图片)
1.同学们,看到了什么?有什么感受?
2.刚刚我们仿佛走进了绿色的世界,真是让人陶醉!这都是植树造林带给我们的好处,上到国家领导人,下到中小学生,都经常参加植树活动(课件:图片),其实,植树中还有很多有趣的数学问题,这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)
二、共同探究,发现规律
1.绿化小学四年级的同学在植树中就遇到了一些问题,我们先来看看一班的(课件出示:小路全长100米,现要在一边种一行树,每隔5米种一棵(两端都种)。一共需要多少棵树苗?)
(1)理解信息
师:你认为哪些信息重要(关键词刷红)
师:你怎样理解“两端都种”和“每隔5米”
师:两棵树之间的空,我们也叫做间隔(课件),你和我之间有没有间隔,有几个?请你起立,咱们三个之间有几个间隔?
(2)引发猜想。
师:现在大家就试着做一做吧!
(生试做,指名板演)
师:我们请这几位同学分别说说他们是怎么想的
师:这几种做法的相同点是什么?不同点是什么?
师:100 ÷5得到的20到底求的是间隔数还是棵树呢?像这种两端种树的问题,棵树和间隔数之间究竟有什么关系呢?(课件出示)我们进行一次模拟植树活动怎么样?
(3)实验探究
师:可是身边没有树怎么办呢
(用笔、用火柴等)
师:你们真的都很有创意,遇到难解决的问题时,都能想到用身边简单的事物做例子来研究,值得表扬,请看活动要求(出示:活动要求:请选择自己喜欢的方法动手试一试,也可以和同伴们共同研究,思考、交流:你把什么当成了树?种了几棵?有几个间隔?发现棵数和间隔数之间有什么关系?),谁来读读(学生读要求),明确要求了吗?开始吧!
(小组合作,教师巡视,找出典型验证方法)
(4)发现规律
师:看来,大家都研究的差不多了,谁愿意和大家交流一下这几个问题?(边汇报边板演棵数和间隔数)
师:同学们,我们来看这组实验数据,谁能用一句话概括你的发现
师:刚刚我们通过这几种不同的实验活动,都得到了一个共同的结论,就是两端种树时,棵数比间隔数多1,用关系式表示是——棵数等于——间隔数+1(贴图并板书),间隔数等于——(棵数-1),10个间隔几棵树?100个间隔几棵树?100棵树有几个间隔呢?
师:那为什么棵数会比间隔数多1呢
师小结:其实这几位同学用到的是数学中很重要的'一种思想,“一一对应”(板书)我们来看,(指板书)一棵树,后面对应一个间隔,一棵树,后面对应一个间隔,最后一棵树后面没有对应的间隔(画弧线),所以,不论有几个间隔,棵数总比间隔数多一。
(5)应用规律
师:应用这个规律,我们来看哪个答案是正确的(第一个)
师:先用——100 ÷5=20,求出——间隔数,再用——20+1=21,求出——棵数(相应板书)那做错的同学错在哪了呢?
(6)梳理方法。
师小结:问题解决了,现在让我们一起梳理一下刚才的学习过程,首先对问题进行大胆地——猜想,再通过——实验,对猜想进行——验证,然后得出科学的——结论,最后应用结论去解决问题(板书:猜想——实验——验证——结论——应用)。这也为我们以后研究问题提供了一些好的方法和思路。你们能用刚刚学到的知识帮助二班和三班解决问题吗?
三、逆向练习,加深理解
出示:
1.四年二班在一条直路的一边植树,计划每隔5米种一棵,需要种21棵树(两端都种),这条直路长多少米?
2.四年三班在全长100米的直路一边植树,计划等距离种21棵树(两端都种),相邻两棵树间隔多少米?
自己读读题,然后解答
(逐个讲评)
四、联系生活,拓展提升
师:刚刚我们解决了几个关于植树的问题,其实生活中还有很多与植树问题类似的现象,想一想,有哪些?
(锯木头摆花(东西)站队上楼梯安路灯等)
师评价:看来你们都有一双善于发现的眼睛,老师也找到了一些,请看(课件出示图片,说清与植树问题的联系)
师:联系我们都找到了,你们想实际解决一下吗
出示:
注意:请自由选择两道题解决,有余力的同学也可以全做。遇到问题可以举例子试试,也可以和同伴共同解决。
1.安装路灯
在全长20xx米的街道两旁安装路灯(两端都装),每隔50米安装一座。一共安装多少座路灯?
2.排队问题
早操时排队,每隔2米排一人,一排有22人。这排队伍是多少米?
3.上楼梯问题
我们班教室在三楼,我们每天从一层到三层一共要走48个台阶,每层有多少个台阶?
4.敲钟问题广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?
师:先读读注意事项,然后解答
(生解答,指名板演)
师:谁来说说你解决的是什么问题?(自选汇报)
师总结:同学们,通过本节课的学习,我们能够解决直路上两端种树以及与之相类似的一些问题,可是四班和五班却遇到了两种不同的情况(课件),他们会遇到什么问题呢?这两种情况下,棵数和间隔数之间又有什么关系呢?我们下节课再来研究!
《植树问题》教学设计6
【教学目标】
知识目标:
1.利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。
2.让学生自主探索、讨论、交流,使学生发现并理解植树问题(两端要栽)的解题规律,并利用规律解决一些实际问题。
能力目标:
1.让学生经历分析、思考、解决问题的整个探究过程,并从中学习一些解决问题的方法和策略。
2.通过探索间隔数与植树棵数之间的规律,初步体会化复杂为简单和一一对应的数学方法。
情感目标:培养学生的分析意识,养成良好的交流习惯,感悟日常生活中处处有数学,体验学习的成功喜悦。
【教学重点】:引导学生发现棵数与间隔数的关系。
【教学难点】:理解间隔与棵数之间的规律并运用规律解决问题。
【教学准备】:课件、学生用尺子、表格等。
【教学过程】:
一、谜语导入,引入新课
师:同学们,你们喜欢猜谜语吗?
生:喜欢。
师:今天啊,老师带来一个谜语想和大家一起猜一猜,请看。两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。它是什么呢?你说说看?
生:他是手。
师:哦,他就是我们的手。我们的手作用可真大,又会写又会画还会算,而且我们的手上还有许多的数学奥秘,仔细看老师的手,你看到了数字几呢?
生:5.
师:哦,你们都看到了数字五,那你还能看到数字几呢?
生:我看到了数字4、3、2、1。
师:哦,你说的数字4、3、2、1表示的是什么啊?能告诉我们吗?
生:手指的个数。
师:哦,手指的个数。那我们说的五也是手指的个数,对吧。诶,除了手指的个数外你还能看到什么呢?
生:还能看到手指之间的间隔。
师:哦,手指之间还有一个个的间隔。同学们,在老师的手上五个手指之间到底有几个间隔呢?
生:4个。
师:数一数。1、2、3、4,恩,还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?
生依次回答。
师:恩,一个间隔。同学们,你们发现了手指数和间隔数之间的关系了吗?手指数比间隔数怎么样啊?
生:手指数比间隔数多一。
师:说得真完整。谁还说?
生2:手指数比间隔数多一。
师:哦,那间隔数比手指数呢?
生3:间隔数比手指数少一。
师:哦,谁还说?
生4:间隔数比手指数少一。
师:同学们,你能用一个算式来表示手指数和间隔数之间的关系吗?手指数等于什么呢?
生1:手指数等于间隔数加一。
师:哦,谁还说?
生2:手指数等于间隔数加一。
师:恩,还谁会说?好,你也来试试。
生3:手指数等于间隔数加一。
师:很好,那么间隔数等于什么呢?
生1:间隔数等于手指数减一。
师:恩。
生2:间隔数等于手指说减一。
师:恩,真聪明。好了,同学们,我们每个人啊,都有两件宝贝,一个呢是我们的双手,一个是我们的大脑。我们利用我们的大脑发现了这么多手上的奥秘,看来我们的数学真是无处不在啊。
二、探究规律实现目标
1、多媒体出示学校操场
师:这里是哪里?
生:操场!
师:看来同学们对我们的学校真是非常熟悉,一下就认出了这就是我们的操场。为了美化我们的学校,校长打算在100米的操场小路上植树,可不是随便种的哦,校长可是有要求的。今天我们就要利用我们的双手和大脑一起来研究植树中的数学问题。-------植树问题。(板书课题)
出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共要栽多少棵树?
师:读一读,在题中你读到哪些信息?谁来说一说?
生:……………………
师:一边表示什么?全长100米表示什么?每隔5米栽一棵表示什么意思?
师:什么是两端都要栽?
生:……………………..
(1)师小结:用图演示说明:一边是小路的一侧,指左边或者右边,全长100米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。
(2)算一算,一共要栽多少棵树?
(3)反馈答案:
方法1:100÷25=20(棵)
方法2:100÷25=20xx+2=22(棵)
方法3:100÷25=20xx+1=21(棵)
(4)师提出疑问:现在出现了三种答案,到底哪种答案是正确的呢?用什么方法来验证?
三、自主探究,发现规律
1.师用课件出示下表说:同学们想的办法真多,我们可以选择画线段图来验证。但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究、验证。如本题中假设路长只有5米、10米、15米、20米…每5米栽一棵(两端要栽),可栽几棵呢?下面我们一起来画线段图来分析、研究一下。(板书:复杂——简单)
总长
(米)
间距
(米)
线段图例
(图上厘米代表实际米的距离)
间隔数
(段)
棵数
(棵)
5
5
10
5
15
5
20
5
..
..
..
..
2.先明确表意,再让学生探索完成上表中的内容。
1.全班交流汇报表中内容。
2.小组讨论:总长、间距和间隔数之间有什么关系?间隔数和棵数之间呢?
3.把上表一分为二,让学生交流展示讨论结果。
(1)出示下表交流汇报总长、间距和间隔数之间的关系。并借助数据,帮助学生理解这一关系的意思。(板书:总长÷间距=间隔数)
总长
(米)
间距
(米)
间隔数
(段)
5
5
10
5
15
5
20
5
..
..
..
(2)出示下表交流汇报间隔数和棵数之间的关系。并借助表中数据,帮助学生理解这一关系的意思,但关键让学生理解为什么棵数比间隔数多1,渗透对应思想。(板书:间隔数+1=棵数)
线段图例
(图上厘米代表实际米的距离)
间隔数
(段)
棵数
(棵)
1
2
2
3
3
4
4
5
..
..
..
4.教师小结
(1)同学们非常能干,通过猜测、验证、讨论发现了植树问题中一个非常重要的规律,那就是如果再一条路上植树,两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1,而总长除以间距等于间隔数。对这个规律有没有不同意见?有没有不同说法?
(2)填一填,反馈规律。
()×间隔数=总长棵数–1=()
总长÷()=间距()-()=1
四、活用规律,解决问题
(一)回归疑问,初用规律
以表格的形式摘要出例题1的重要信息后,师说:现在我们用刚得到的规律验证一下课前同学们做例题1的`三种解法,哪种正确呢?说说你是怎样想的?
总长
(米)
间距
(米)
间隔数
(段)
棵数
(棵)
100
5
(二)基础练习,再用规律
师:同学们真会动脑筋!通过简单的例子,发现了规律,应用这个规律解决了复杂的问题。以后遇到“两端要种,求棵数”的植树问题,知道该怎么做了吗?请试一试:
1、把下表补充完整
总长
(米)
间距
(米)
间隔数
(段)
棵数
(棵)
100
5
20
21
200
5
200
10
1000
8
(三)深化练习,拓展规律
师:同学们真能干!其实我们的生活中还存在着许多类似植树问题的现象。
1、说一说,生活中的哪些情况类似植树问题呢?
2、课件依次演示:
不容易看见却能“想象”的树
看不见却能“听得见”的树
师说明:在数学上,我们把这类问题也归为“植树问题”。
3、巧用规律,解决生活中类似问题
(1)请你选一选:
这排礼炮共有29个间隔,合()门礼炮。
①28门②29门③30门
(2)下面哪个算式是正确的?
一列共有25张凳子,有()个间隔?
①25+1=26个②25个③25-1=24个
(3)公交车从东站到西站全长18千米,相邻两站的距离是2千米。一共有多少个站点?
(4)一盒9响鞭炮,当听到第一个爆炸声开始计时,到第二声响起时,经过2秒钟。当听到最后一声响起时共经过几秒钟?
五、拓展
教师总结延伸:同学们这节课中运用化复杂为简单的数学思想方法发现了两端都栽的植树问题中的规律,并能利用规律解决生活中类似的实际问题。其实,植树问题还有一端栽一端不栽、两端都不栽、封闭图形,如正方形、圆形花坛等情况,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。继续努力吧!
六、全课总结,理顺知识
这节课你有什么收获?
《植树问题》教学设计7
教材分析:
“植树问题”在实际生活中应用比较广泛,它通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:
1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。
2.掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。
教学重难点:
掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。
教具学具:
绳子、挂图、泡沫、小树、题卡
教学过程:
一.创设情境,导入新课
1.小游戏:
点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种情况:4个、3个、2个)(解释“间隔”的意思)
通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:通过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。
2.导入新课:今天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)
二.新课探究:
1出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?
点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在轻松愉快的生活化的课堂环境中学习数学。
2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,
要求:(1)计算一共需要准备多少棵树苗
(2)思考棵数与间隔数的关系。
点评:学生亲自动手操作,并通过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的能力,把感性认识上升为理性认识。
3.汇报结果:
(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1
(2)只种一端:50÷5=10(棵)结论:棵数=间隔数
(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1
4、总结(学生汇报教师书写):
(1)两端都种:棵数=间隔数+1
(2)只种一端:棵数=间隔数
(3)两端都不种:棵数=间隔数-1
点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种情况的理解。结论的得出也就水到渠成了。
三、课堂练习
1、做一做:
(1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?
(2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?
2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。
(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)
(2)插彩旗(20分):学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)
(3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?
(4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?
(5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?
(6)街道上(50分):在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)
(7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?
(8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?
(9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?
(10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?
点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的积极性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,
四、全课小结:这节课我们学习了什么内容?你还有什么疑问?(植树问题的三种情况)
五、板书设计
植树问题
两端都种:棵数=间隔数+1
只种一端:棵数=间隔数
两端都不种:棵数=间隔数-1
例题:寰岛小学决定美化校园,要在长50米的.塑胶跑道的
一侧每隔5米植一棵树,一共需要准备多少棵树苗?
两端都种:50÷5+1=11(棵)
只种一端:50÷5=10(棵)
两端都不种:50÷5-1=9(棵)
(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)
(2)插彩旗:学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)
(3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?
(4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?
(5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?
(6)街道上:在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)
(7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?
(8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?
(9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?
(10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?
教学后记:
本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:
一、动手操作、合作交流、探究规律:
本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。
二、练习的设计独特、新颖、有梯度:
本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)
三、充分体现学生的主体作用及教师的主导作用:
本节课,我通过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。
《植树问题》教学设计8
教学目标:
1、通过探究发现一条线段上两端都种、只种一端、两端不种三种情况植树问题的规律。
2、使学生经历和体验“复杂问题简单化”的解题策略和方法。
3、感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。
教学重、难点:
发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。
教学过程:
一、创设情境——培养意识
1、师:同学们好!一起来看两组画面。
(给学生播放荒漠化严重的和绿化优美的两组图片。)
师:看了这两组画面,你更喜欢哪一种呢?
师:怎样才能拥有这样美丽的环境呢?
生:植树。
师:植树造林,保护环境,让我们拥有一个充满鸟语花香的绿色花园是我们每个人都应尽的义务!
师:说到植树,大家知道吗?在我们数学王国里,植树可是有一定的学问的,这节课我们就来探讨“植树问题”。——板题
2、出示教学目标
3、师:见过路边种树吗?一般情况下,每两棵树间距离怎样呢?(相等)一般情况下路边植树每两棵树之间的距离都是相等的,我们也可以叫做等距离植树。
师:在路的一边等距离地植树会有几种情况呢?大家想不想亲手种种看?
二、动手种树——探讨规律
1、动手“种”树
师:大家先看老师为大家准备的材料……(师介绍)
出示操作要求:在路的一边,等距离植树,种完后小组里交流看看有几种情况?
学生动手植树,师巡视。
2、交流方案
小组上台展示自己组的种树方案。
两端都种
两端不种
只种一端
3、仔细观察,每棵树之间都有间隔,那么植树的棵数跟间隔数之间有什么联系?
生仔细观察,得出猜想:两端都种棵数=间隔数+1
两端不种棵数=间隔数-1
只种一端棵数=间隔数
三、验证规律
1、师:通过仔细观察,我们得出了自己的猜想。但是,每一种猜想在没有验证之前,也只能是一种猜想,我们只有通过验证,才能让猜想成为科学,对于我们刚才总结出的规律也必须通过验证才能得出正确结论。下面,让我们一起动手来验证我们的.猜想。
2、完成验证表格。
师出示:这是一张验证表格,就请大家在小组内共同合作,一起探究,并展示你们组总结出的规律。(出示验证事项)
3、小组合作探究。
4、展示。
分三种情况汇报。
5、梳理规律
师:同学们,在一条路的一边植树的三种规律我们都找出来了,我们一起来研究一下,它们之间有没有什么关系?
相同点:都与间隔数有关
不同点:两端都种要用间隔数+1;只种一端就等于间隔数;两端不种就要用间隔数-1
师:这三种情况是不同的,我们在解决问题时,要注意具体情况具体分析。
四、解决问题
师:知道在路的一边植树有三种情况,对于下面的信息,你会提出什么样的数学问题呢?
1、处理信息
问题情境:这是实验小学刚建好的一条校道(配图),看到这光秃秃的校道你会想到什么呢?
生:种树!
出示信息:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵
师:根据这些信息你会提什么数学问题呢?
生:一共可以种多少棵树?
得不完整例题:
实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,一共需要多少棵树苗?
师:看着这道题,谁有话想说吗?
生1:两端都种
得完整例题:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?
师:受他的启发,还能提出什么样的问题?
生2:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?
生3:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?
师:三种情况大家都想到了。大家再看看这条校道,你认为采取哪种方案更合适一些呢?
生:两端都种
2、抽取问题
出示例题:(配图片)
实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?
师:愿意帮学校算算吗?
3、学生试解。
4、汇报交流。
生汇报,师:能说说你的解题思路吗?
师:刚才我们从小的数据入手,探讨出规律,然后再用规律来解决数据大的问题。这种思路正是数学上常用的“以小见大”。
师:大家学会了这种方法吗?我们再来考验考验自己的掌握情况好不好?
5、探讨只种一端
师:如果学校想在这路的末尾建一座供师生休息用的小亭子,那又应该选用哪一种植树方案更合理?
生:只种一端。
(实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?)
学生试解。
6、探讨两端不种
师:我们再接再厉,学校后来还要在这条校道的另一端筑一个墙报,请大家想想,应采用哪种方案更合适呢?
生:两端不种。
(实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?)
学生试解。
五、小结方法——提升认识
1、探讨方法
师:大家能通过自己的努力把这么一道新的问题解决,我们应该感到高兴!但是老师认为还有更重要的方法更需我们去总结!
师:大家再回头看看,我们是怎样一步一步把植树问题给解决的?
(动手操作——提出猜想——画图验证——得出规律——解决问题)
2、阅读课本
(1)阅读例1
师:今天我们学习的就是课本117页开始的数学广角,请大家打开书本。
师:课本上的同学们遇到了什么问题,他们又是采取什么样的办法来解决的?
生:画图,找规律。
师:真是好方法!大家掌握了吗?
(2)阅读例2
师:阅读118页例2,看看课本中的孩子又遇到了什么问题,你能帮他们解决吗?
生完成,交流。
六、拓展练习
1、听说大家聪明能干,又乐于助人市政规划局的同志找来了,他呀,想请大家帮个忙,(出示119页做一做1)
2、生尝试解答。
3、全班交流。
七、全课小结
师:通过今天的学习,你有什么收获呢?
生畅谈自己的收获。
师小结:收获方法比收获知识更重要,祝贺大家!
板书设计:
植树问题
两端都种棵数=间隔数+1
两端不种棵数=间隔数-1
只种一端棵数=间隔数
《植树问题》教学设计9
教学目标:
1.认识棵数,知道什么是间隔数、。
2.理解在线段上植树(两端都栽)的情况中“棵树=间隔数+1”的关系。
3.能将植树问题推广到生活中的其他问题,学会通过画线段图来分析题意。
教学重点:
探究植树的棵数和间隔数之间的关系,并能用发现的规律解决实际问题
教学难点:
灵活运用“两端都栽”情况下植树的棵数和间隔数之间的规律解决生活中的实际问题
导学指要:
1.通过五指初步感知棵数与间隔数之间的关系,理解间隔、间隔数、间距的.含义。
2.通过老师用画线段的方法模拟种树情境理解解决问题的方法,再采用合作学习的方式利用学具摆、数、画等方法,进一步明确棵数与间隔数之间的规律。
3.学习植树问题在生活中的运用。
教具:课件一套学具9套自学提示卡一张
预设教学流程:
一、创设情境生成学习目标
1、教学“间隔”定义
师:我们班在各方面都十分优秀,俗话说的好:耳听为虚、眼见为实,今天让来听课的老师也看看我们班的风采好吗?
生:好
师生问好
师:我们人有两件宝贝,是双手和大脑,今天这节课,我们就要用到这两样宝贝,动脑去思考:手与我们这堂数学课有什么关系呢?手上有哪些数学问题呢?好,现在我们就去探讨。
师:请你伸出你的右手,观察你有几根手指?几个手指缝?它们存在什么样的关系呢?
生:……………………
师:减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?
生:……
师:再减掉1根手指,现在你有几根手指?几个手指缝?它们之间又存在着什么样的关系呢?
生:……
师:通过刚才的观察,想一想,手指和手指缝之间存在着怎样的关系呢?
生:……手指比手指缝多1,手指缝比手指少1。
师:这两根手指之间的手指缝,用数学语言来说就叫间隔,间隔的个数就叫间隔数。
板书:间隔数
2、在生活中找间隔
师:和你的同桌说说:什么是间隔数?
生:……
师:我们再来体验,请一排的前三名同学站起来,这一排同学有多少个间隔?
生:…………….
师:请这一排的前四名同学站起来,用你们的手指告诉老师,这一组同学的间隔数是多少?
生:……………
师:今天将利用数学知识来解决“植树问题”。
板书课题:植树问题
二、探究规律实现目标
1、多媒体出示学校操场
A师:这里是哪里?
学校打算在100米的跑道上植树,来美化我们的学校。可不是随便种的哦,学校可是有要求的。
出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?、
师:读一读,在题中你读到哪些信息?谁来说一说?
生:……………………
师:全长100米表示什么?每隔5米栽一棵表示什么意思?一边表示什么?
师:什么是两端都要栽?
生:……………………..
(此环节要全方位理解题意)
师:今天这节课我们重点来研究两端都栽的植树问题,板书:两端都栽
师:题目都理解了,请大家动笔尝试算一算,一共需要多少棵树苗?
B生动笔算
师:谁来说说你是怎样列式的?
生:……..
板书:100÷5=20xx+1=21(棵)
100÷5=20xx+2=22(棵)
100÷5=20xx+1=21(棵)
21x2=42棵
师:学校可犯糊涂了,有这么多种结果,到底该买多少棵呢?接下来我们来验证下吧
请同学们利用画一画,数一数,算一算,到底该买多少棵树苗?
C学生小组合作,教师巡视,并有目的的选取学生
D在实物投影上展示学生的作品
学生展示并板演
用画线段的方法解决的棵数与间隔数的关系
反馈黑板上的题目,注意利用错误资源教师提问:100÷5=20求的是什么?为什么还要加1呢?
2、再次课件演示得出结论
那你们获得的结论是什么呢?在两端都栽的情况下棵数与间隔数之间有什么关系呢?
棵数=间隔数+1
师小结:
你们真了不起,你们发现了植树问题中非常重要的一个规律棵数=间隔数+1
3、应用规律解决问题
师:应用这个规律,我们来解决在一条全长100米的小路一边植树,每隔4米栽一棵,(两端都栽)一共需要多少棵树苗?
在一条全长1000米的小路一边植树,每隔5米栽一棵,(两端都栽)一共需要多少棵树苗?
生:……………
师:同学们真的很了不起。通过把复杂的问题简单化,发现了“两端都栽”求棵数的解题规律,你们能够独立解决植树问题了吗?
《植树问题》教学设计10
课题
植树问题(二)
课时
1
班级
四年级
编写者
林英
一、教材内容分析
人教版四年级下册第8单元书120页
二、教学目标(知识与技能、过程与方法、情感态度与价值观)
1、使学生理解并掌握一个封闭图形的植树问题的规律。
2、学会用不同的方法分析具体的数学问题。
3、经历数学问题的探究过程,体验用不同的`思路解决问题的方法。
4、沟通数学知识与生活之间的密切联系,激发学生的学习兴趣,培养学生的动手操作能力,发展学生的发散思维。
三、学习者特征分析
学生已经初步掌握关于一条线段的植树问题,但是,这个内容学生理解起来还是比较困难,特别是中下的学生。因此,在这基础之上,要让学生借助围棋盘,动手摆一摆,通过小组合作来一起探讨封闭曲线中的植树问题。
四、教学策略选择与设计
自主探索合作交流总结规律
五、教学环境及资源准备
投影仪,每小组一副围棋。
六、教学过程
教学过程
教师活动
预设学生行为
设计意图及资源准备
一、创设情境
教师投影出示教材第120页例3情境图。
教师:图上两位小朋友在干什么?(下围棋)
你对围棋有哪些了解?
师:在这小小的围棋盘下可有不少数学问题呢!
板书课题:植树问题(二)
让学生畅所欲言。
吸引学生的注意力,激发学生的学习兴趣。
二、探究新知
(1)教师投影出示围棋盘。
师:在围棋盘上一个点可以放一个子。
(2)出示例3。
围棋盘的最外层每边能放19个棋子。最外层一共可以摆多少个棋子?
师:同学们算得都正确。还有其他的方法吗?
师:你发现了什么?
学生通过分析比较会发现:围棋盘最外层摆的棋子数等于最外层每两个棋子间的间隔数。
(1)学生读题,理解题意。
(2)动手在围棋盘上摆一摆,数一数,小组合作探究。
(3)学生汇报。
通过动手摆,认真的观察判断,分析比较,从中发现规律。培养学生的发散思维,动手能力。
三、反馈应用
(1)教材第121页做一做第1题。
教师投影出示情境画面,出示第1题。
(2)教材第121页“做一做”第2题。
①讨论:可以怎么摆放?
②最少需要多少盆花?
(3)教材第121页“做一做”第3题。
学生读题,理解题意。
学生汇报。
学生在小组中合作完成,然后教师指名汇报,全班集体订正。
四、全课小结
通过今天的学习活动,你有什么收获?
板书设计:植树问题(二)
例3:
a.19×2+17×2=72(个)
(19+17)×2=72(个)
b.18×4=72(个)
c.17×4+4=72(个)
封闭图形:植树棵数=间隔数
《植树问题》教学设计11
教材分析
两端植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。
学情分析
让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现绿化的重要性。
教学目标
1、理解在线段上植树(两端栽)的情况中“棵数=间隔数+1”的关系。
2、利用线段图理解“棵数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距的关系,解决生活中的.实际问题。
3、能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意。
教学重点和难点
[教学重点]:用不完全归纳法总结并理解“点数=间隔数+1”。
[教学难点]:掌握用线段图解决生活中的数学问题的方法。
教学过程
一、创设情境
1、听唱歌曲《春天在哪里》,让学生感受春天的美好。
2、比较两组图片的不同,让学生说出植树对人类的重要意义,引出本节课所要学习的的植树问题。
二、探究新知
(展示题目)
(一)宝塔山下有一条长20米的小路,一边等距离植树,两端都栽,可以怎样植?用线段图表示你的方法。(小组讨论)、
1、学生画线段图表示,教师巡视指导。
2、指名回答。
3、教师把学生的想法用表格出示如下:
4、引导总结:
5、生:手指线段图
师:在线段图上,点数和间隔数又有怎样的关系呢?
生:点数=间隔数+1
6、师:总长与间距和间隔数又有怎样的等量关系呢?
生:总长=间距×间隔数
7、尝试应用:
三、巩固新知
四、小结本节内容
五、教学作业
《植树问题》教学设计12
教材分析:
“植树问题”在实际生活中应用比较广泛,它通常是指沿着必须的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,透过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:
1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。
2.掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。
教学重难点:
掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。
教具学具:
绳子、挂图、泡沫、小树、题卡
教学过程:
一、创设情境,导入新课
1.小游戏:
点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种状况:4个、3个、2个)(解释“间隔”的意思)
透过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:透过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。
2.导入新课:这天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)
二、新课探究:
1出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?
点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在简单愉快的生活化的课堂环境中学习数学。
2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,
要求:(1)计算一共需要准备多少棵树苗
(2)思考棵数与间隔数的关系。
点评:学生亲自动手操作,并透过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的潜力,把感性认识上升为理性认识。
3.汇报结果:
(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1
(2)只种一端:50÷5=10(棵)结论:棵数=间隔数
(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1
4、总结(学生汇报教师书写):
(1)两端都种:棵数=间隔数+1
(2)只种一端:棵数=间隔数
(3)两端都不种:棵数=间隔数-1
点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种状况的理解。结论的得出也就水到渠成了。
三、课堂练习
1、做一做:
(1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?
(2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?
2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。
(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)
(2)插彩旗(20分):校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)
(3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?
(4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?
(5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?
(6)街道上(50分):在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)
(7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?
(8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?
(9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?
(10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?
点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的.解决问题的用心性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,
四、全课小结:
这节课我们学习了什么资料?你还有什么疑问?(植树问题的三种状况)
五、板书设计
植树问题
两端都种:棵数=间隔数+1
只种一端:棵数=间隔数
两端都不种:棵数=间隔数-1
例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的
一侧每隔5米植一棵树,一共需要准备多少棵树苗?
两端都种:50÷5+1=11(棵)
只种一端:50÷5=10(棵)
两端都不种:50÷5-1=9(棵)
(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)
(2)插彩旗:校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)
(3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?
(4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?
(5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?
(6)街道上:在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)
(7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?
(8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?
(9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?
(10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?
教学后记:
本节课旨在透过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,用心性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:
一、动手操作、合作交流、探究规律:
本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的构成,提高了学生的思维水平,完善了学生的认知结构。
二、练习的设计独特、新颖、有梯度:
本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的用心性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)
三、充分体现学生的主体作用及教师的主导作用:
本节课,我透过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。
《植树问题》教学设计13
教学目标:
1、感受“植树问题”在生活中的广泛应用,并能用此方法解决简单的实际问题。
2、学会从实际问题中探索规律,找出有效解决问题方法的潜力。
3、透过生活的事例,初步体会“植树问题”的思想方法。
教学难点:运用“植树问题”的解题思想解决实际问题。
教学重点:参与探索并发现“植树问题”的解题规律。
教学准备:练习纸、课件
教学过程:
一、谈话引入,揭示课题
师:同学们,你明白我们这天要学习什么资料吗?
生:植树问题
师:你们是怎样明白的哦?
好,这天我们就来研究植树中的问题。植树问题中蕴涵着许多搞笑的数学问题。你们喜不喜欢?
板书课题:植树问题
出示学习目标:
二、操作感悟,探究规律
1、请看大屏幕:
(1)想一想:
那里有一条线段,我们把它看作一条路,这条路长20米,如果要在这条路上种树,请同学们想一想,你们还要了解什么信息?
①每棵树之间相隔几米?(间隔)②是不是两端都种呢?……看来同学们思考问题还很全面呢!
(2)猜一猜:
如果告诉你每隔5米种一棵,种几棵比较适宜?
生1:5生2:4生3:3
(3)画一画:
师:那么,有什么办法验证你的想法?(画图)
哦,你能不能用简单的示意图把你的想法简单地画出来呢?
(教师先介绍画树的方法,学生画图,教师巡视)看谁画得又对又快。
2、展示、汇报
①选一学生的示意图展示、汇报。
两端都种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上
②选另一学生的示意图展示、汇报。
只种一端:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上
③选另一学生的示意图展示、汇报。
两端都不种:电脑展示,学生说出自己的想法,教师把学生画的示意图画在黑板上
3、写算式
师:我们刚才用图来表示的思维过程能不能用个算式来表示?
①只种一端:你是怎样想的呢?谁能来说一说。
20÷5=4(段)=4(棵)
棵数和段数一一对应。
②两端都种:20÷5+1=5(棵)
20÷5表示什么?加“1”是什么意思?
③两端都不种:最后一种用算式怎样表示呢?20÷5-1=3(棵)
每间隔5米是这样的,假如每间隔是2米,分别能种几棵呢,列出算式(不要画图了,要画就画在脑子里)
20÷2+1=11(棵)20÷2=10(棵)20÷2-1=9(棵)
4、小组讨论:
我们刚才在这条20米的路上,每间隔5米和每间隔是2米分别种多少棵树都做了,仔细看看,你们有什么想说的?先独立思考,想好后再和同学交流,然后向老师汇报。(告诉你总长度、间隔长,要你求种多少棵树,是否有简单的方法?)
5、教师引导学生总结:
①只种一端:棵数=段数
②两端都种:棵数=段数+1③两端都不种:棵数=段数—1
那么段数(间隔数)怎样求呢?
所以解决植树问题,首先要确定它是怎样种的.?是两端都种、只种一端还是两端都不种,再分别根据以上数量关系来解决就能够了。
6、象这样,这天用植树问题这样的思考方式来思考的,平时生活当中的问题还是否有?(摆花、锯木头、站队……)
师:老师也收集了一些图片,看看那里有植树问题吗?
(根据学生的回答教师出示课件,并说明为什么属植树问题)
三、活学活用,解决问题
师:我们刚才透过猜测、验证、推理,摸索了植树问题中的一些规律,我们能不能应用这些规律来解决生活中的实际问题呢?
(一)基本练习:我能行!
1.从头至尾栽了10棵树,那么有个间隔。
2.一根木头长8米,每2米锯一段。一共要锯次。
好,两道题都做对的对老师笑一笑。哇!我从同学们灿烂的笑脸中读出了自信,读出了自信!老师为你们加油!
(二)综合练习:我挑战!
1、林木工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
①6×36=216(米)
②6×(36-1)=210(米)
③6×(36+1)=222(米)
2、一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?
①10÷5=2(米)2×8=16(分钟)
②5×8=40(分钟)
③(5-1)×8=32(分钟)
3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
①12÷1=12(个)
②12÷1+1=13(个)
③12÷1-1=11(个)
(三)拓展练习:我智慧!
四、再次梳理,总结提高
这天我们学习了什么资料?你有什么收获?你有什么感受?
《植树问题》教学设计14
教学目标:
1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。
2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。
3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。
教学重点:
理解“植树问题(两端要种)”的特征,应用规律解决问题。
教学难点:
让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。
教学准备:
课件
教学过程:
一、初步感知间隔的含义
1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的'数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。 也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。
师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)
2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。( 揭题,板书:植树问题)
二、探究规律,解决问题。
1、找出两端都种树的规律
植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准, 但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。
假设路长只有10米、15米、20米,每5米栽一棵,两端都栽:(两端就是路的两头),要栽几棵呢?(小组合作用画线段图来表示小路,假设路10米,每隔5米种一棵,这条小路平均分成了几个间隔?两端都栽,摆几棵小树呢?)师:请同学们仔细观察,两端都栽树,栽树的棵数与平均分成的间隔数谁多谁少呢?(棵数都比间隔数多1或间隔数比棵数少1)师问为什么两端都种树,棵树只比间隔数多1呢?(因为从一端看过去,棵数和间隔数一一对应,一端只多了一棵树。)已知间隔数怎样求棵数呢?出示并板书:两端都栽:棵数=间隔数+1)考考你:如果这条路是25米、每隔5米栽一棵,各要平均分成几个间隔?两端都栽,栽几棵树呢?30米呢?
师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷ 5 = 20 (个间隔)20+ 1= 21(棵)。利用两端都栽树,
棵数=间隔数+1”这个规律解决了两端都植树的问题。
三、应用规律,走进生活。
走进生活:
(一)目标检测:
1.排列在同一条直线上的16棵树之间有( )个间隔。 2.从第1棵树到最后1棵树之间有30个间隔,一共有( )棵树。
3.在一条全长200米的小路一边植树,每隔4米种一棵(两端要种),一共需多少棵树苗?
(二)闯关题
1、工人叔叔准备在一条长200米的大桥一侧安装路灯,每隔40米安装一盏,问共需安装几盏?
2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?
3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?
5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?
四、总结:通过这节课的学习,你们有什么收获?
五、作业设计
实地考察
六、板书设计:植树问题
两端要栽:棵数=间隔数+1;
《植树问题》教学设计15
【教学目标】
知识目标:
1、利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。
2、让学生自主探索、讨论、交流,使学生发现并理解植树问题(两端要种)的解题规律,并利用规律解决一些实际问题。
能力目标:
1、让学生经历分析、思考、解决问题的整个探究过程,并从中学习一些解决问题的方法和策略。
2、通过探索间隔数与植树棵数之间的规律,初步体会化复杂为简单和一一对应的数学方法。
情感目标:
培养学生的分析意识,养成良好的交流习惯,感悟日常生活中处处有数学,体验学习的成功喜悦。
【教学重点】
教学重点:引导学生发现棵数与间隔数的关系。
【教学难点】
理解间隔与棵树之间的'规律并运用规律解决问题。
【教学过程】:
一、激趣导入,谜语导入激发学生的兴趣。
同学们!你们喜欢猜谜游戏吗?老师说一个谜语让同学们猜一猜,看谁能最先猜出来。
一颗小树五个叉
不长叶子不开花
能写会算还会画
天天干活不说话
谜底:(手)
出示课件,让学生举手回答谜底,并作表扬或鼓励。
1、师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解它吗?请举起你的右手。(五指伸直、张开)师:张开的五指中有了一些空隙。数学中我们把这个“空隙”叫“间隔”。同学们看一看,3根手指中有几个间隔?那么4根手指呢?5根呢?
在我们的生活中,像这样的例子很多很多,比如路灯、公路边上的树和摆放的花盆,它们之间都有间隔。生活中的“间隔”到处可见,你能举几个例子吗?它们都有一个共同的特征,都有间隔,那么在数学上我们把研究与间隔有关的问题叫做植树问题,今天我们就一起来研究它。
二、构建模型
1、了解植树问题中棵数与间隔数之间的关系
师:在植树问题中,有几种情况:一种是两端都栽,一种是只栽一端,还有一种是两端都不栽。今天这节课我们只学习“两端都栽”的情况(课件出示三种情况)。板书:两端都栽。那么两端都栽时,棵数与间隔数之间有什么关系呢?(出示课件,板书棵数、间隔数)当只有3棵树时,它们之间有几个间隔呢?4棵树时有几个间隔呢?5棵树呢?现在同学们想象一下,如果有10棵树呢?50棵树呢?100棵树呢?那么你们发现了棵数与间隔数之间有什么关系呢?(棵数比间隔数多1,间隔数比棵数少1)那谁会用一个等式来表示一下呢?(棵数=间隔数+1,间隔数=棵数-1)(出示板书)
3、利用模型解决问题
1、出示招聘启示:我们学校将对校园进行绿化,特聘请校园设计师设计一份植树方案,择优录取。同学们想成为这名设计师吗?出示设计要求:在操场边上,有一条20米长的小路,学校计划在小路的一边种树,每隔5米栽一棵(两端都栽),一共要栽几棵树?
(1)说说从题中你知道了哪些数学信息?(让学生举手回答)
(2)判断:下面哪种情况是一边种树呢?下面哪幅图是两端都栽的情况呢?(课件出示)
(3)分析题意。
“全长20米”是指小路的总长(板书:总长);“一边”是小路的一侧,指左边或右边;“每隔5米栽一棵”是每两棵树之间的距离,简称“间距”(板书:间距)。“两端要栽”指起点与终点处都要栽。
(4)算一算一共需要多少棵树苗?(学生独立完成)
(5)学生汇报交流。
(6)反馈答案:
方法1:20÷5=4(棵)
方法2:20÷5=4(段)4+1=5(棵)
到底哪一个是对的呢?大家都认为这种方法是正确的,那么算式中的“20”表示什么呢?“5”表示什么?“20÷5=4(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“4+1=5(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。(课件演示分析过程)
谁能够完整地说一说这个算式的意思?
2、试一试。师:如果老师把题目改一改,看看谁还会?课件出示例题1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?
(1)和刚才这题比较,你想说什么?
(2)学生独立列式并汇报。
3、巩固新知师:恭喜大家,顺利完成了任务!你们还想接受新一轮的挑战吗?
(1)出示第一关:说一说。让学生自己读题,抢答。
(2)同学们真棒,现在老师想请同学们在小组内把我们今天学的知识整理一下,看哪一个小组最先完成。(老师课件出示题目,学生完成手里的学习单)学生完成后汇报交流(投影学生完成的情况,并请学生说说自己是怎样想的)
(3)拓展练习。同学们真棒,这两道关卡都没有难住同学们,现在还有最后一道关卡,如果你能闯过最后一关,那今天这节课就要给同学们打100分了。课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?
(1)学生独立阅题,说说这个题目中又有哪些数学信息呢?
(2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)
(3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?
(4)学生独立解答并汇报:
(5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)
(6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?
(7)有谁听懂了这个算式的意思,说给大家听一听?
四、回顾小结
这么难的题目让你们解答出来了,看来今天收获一定不少?谁来说说你今天都有哪些收获?
板书设计
植树问题——两端都种
棵数=间隔数+1
间隔数=棵数-1=总长÷间距
总长=间隔数×间距
间距=总长÷间隔数
【《植树问题》教学设计】相关文章:
植树问题教学设计04-30
《植树问题》教学设计06-23
《植树问题》教学反思07-03
植树问题教学反思06-19
《植树问题》教学反思04-06
烙饼问题教学设计09-12
《植树问题》说课稿05-28
《走,我们去植树》教学设计01-27
《小数除法——解决问题》教学设计12-11