植树问题教学设计

时间:2024-04-30 10:29:28 教学设计 我要投稿

植树问题教学设计

  作为一位无私奉献的人民教师,就有可能用到教学设计,借助教学设计可以提高教学效率和教学质量。那要怎么写好教学设计呢?以下是小编为大家整理的植树问题教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

植树问题教学设计

植树问题教学设计1

  设计说明

  “植树问题”对于学生来说比较抽象,学生接受起来较为困难,本节复习课,就是让学生在已有知识的基础上,巩固所学,理清思路,让学生的数学能力得到进一步的提高。

  1.通过对比,提高学生解决问题的能力。

  植树问题的复习分为三个类型:两端都栽树、两端都不栽树和在封闭路线上栽树。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,本节课把所有类型的植树问题归纳在一起,通过观察比较,得出公式,总结这一类问题的解决方法和策略。最后能够运用所学知识解决所有和植树问题相关的实际问题。

  2.通过变式练习,培养学生灵活运用所学知识的`能力。

  在学生进一步明确了三个类型的“植树问题”的解决方法和策略之后,设计了不同难易程度的练习,让学生根据前面发现的规律来解决。同时做好植树问题和生活实际问题的对比沟通,培养学生的应用意识,提高学生学习数学的兴趣,提高学生运用所学知识解决实际问题的能力。

  课前准备

  教师准备:PPT课件、课堂练习卡

  学生准备:课堂练习卡

  教学过程

  ⊙创设情境,导入复习

  第七单元,我们共同研究了“植树问题”,想一想,“植树问题”存在几种情况,它们的关系是怎样的呢?指名回答后,老师小结。

  (1)在线段上栽树。

  ①两端都栽:棵数=间隔数+1

  ②两端都不栽:棵数=间隔数-1

  (2)在封闭路线上栽树:棵数=间隔数。

  设计意图:通过引导学生进行知识回顾,进一步理解植树问题中存在的规律,为下一步分层练习作铺垫。

  ⊙分层练习,强化提高

  1.基本练习。

  (1)在练习本上画一条10厘米长的线段,每隔2厘米画一朵小花,两端都要画,一共可以画多少朵小花?

  (2)一个堤坝长200米,沿堤坝栽一行小树,每隔10米栽一棵,只有一端栽,一共可以栽多少棵?

  (3)在一段公路的一边栽95棵树,两端都栽,每两棵树之间相距5米,这段公路全长多少米?

  (4)公园大门前的公路长80米,要在公路两边栽上树,每两棵树相距8米(两端也要栽)。园林工人共需要准备多少棵树?

  (学生自由解答,小组内交流,然后教师组织全班交流,指名学生回答,其他同学纠正错误)

  师:同学们真聪明,计算得这么准确,下面老师又为你们准备了一些题目,有没有信心完成?

  2.综合练习。

  一个挂钟,1时敲1下,3时敲3下,12时敲12下,当这个挂钟3时时敲3下共用了4秒钟。当12时时敲12下要用多少秒?

  (1)读题明确题意。

  (2)分组合作探究。

  设计意图:通过分层练习,层层深入地回顾了解决问题的步骤和方法,从而进一步提高了学生的解题能力。

  ⊙全课总结

  通过这节课的复习,我们对植树问题进行了回顾,大家有什么收获呢?

  ⊙布置作业

  1.校园里有一段长80米的路,在路的一侧栽松树,每隔5米栽一棵,一共可以栽多少棵?

  2.要在100米的马路两旁栽树,每隔5米栽一棵,一共可以栽多少棵?

  3.一个圆形花圃周围长40米,沿花圃一周每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?

  4.一个小朋友以相同的速度在路上行走,从第1棵树走到第17棵树需要16分钟。如果这个小朋友走了30分钟,应走到第几棵树?

植树问题教学设计2

  教学目标:

  1、知识与技能:通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到构建数学模型的过程,理解并掌握植树棵数与段数之间的关系。

  2、过程与方法:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。

  3、情感态度价值观:让学生在探索、构建模型、用模型的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

  教学重难点:

  引导学生在观察、操作和交流中探索并发现段数与棵数的规律。并能运用规律解决实际的问题。

  教学准备:课件,纸条,小刀。

  教学过程:

  课前热身:

  师:在上课之前,老师了解了一下,发现我们班很多同学都喜欢唱歌,现在离上课还有一点时间,我们一起来唱《幸福拍手歌》好吗?(播放课件视频,齐唱。)

  师:如果感到幸福你就拍拍手,是双手创造了我们幸福的生活。老师也相信,只要我们在用双手辛勤地创造着,就一定会收获到幸福,今天我们就一起用双手去创造,去收获。

  一、创设情境,生成问题。

  1、猜谜激趣。

  师:同学们喜欢猜谜语吗?我现在要给同学们出一个哑语,谜底是一个成语,同学们看仔细。(师找一个学生配合,用小刀切断纸条。)

  生:一刀两断。

  教师板书:1刀2段,并画出线段图表示。

  师:切两刀呢?(生猜测,师演示,指名画线段图)

  学生回答:三刀呢?五刀呢?(自己画出线段图验证。)100刀呢?

  师:你发现了什么规律?

  学生说,教师板书:刀数=段数-1。

  2、提出问题。

  师:同学们真聪明,可以帮我一个忙吗?出示设计要求:

  在操场边,有一条20米长的小路,学校计划在小路的一边种树,请按照5米一棵的要求,设计一份植树方案。

  师:从这份要求上,你能获得哪些信息?

  (20米长的小路,一边,每隔5米种一棵。)

  师:每隔5米是什么意思?

  (每两棵树之间的距离是5米,每两棵树之间的距离相等。)

  二、探索交流,解决问题。

  1、设计方案,动手种树。

  师:了解了已知条件,请同学们以同桌为一个小组,设计一份植树方案。可以用这条线段代表20米的小路。(师课前给学生准备画有20厘米线段的纸张)用你们喜欢的图案表示树,把你们设计的方案画一画。(小组活动)

  2、反馈交流。

  师:很多小组都已经完成了,先请同学们来说一说,根据你们的方案,需要种几棵树?(5棵,4棵,3棵)

  师:为什么同样的一段路,同样的要求,种的棵数却不一样呢?你们的方案分别是怎样的`?来展示一下你们的设计方案。(小组展示设计方案,交流设计思路)

  师:这三种设计方案是不是都合理呢?怎样来检验一下?(参照设计要求,检验设计的合理性。)既然都合理,比较一下,这三种方案的相同点是什么?

  生:两棵树间的间隔都一样,他们的间隔个数都相同。

  师:那它们的不同点又在哪里?

  根据学生的回答板书:

  (1)两端都栽。

  (2)只栽一端。

  (3)两端都不栽。

  师:就一个要求,同学们就能设计出这么多不同的方案,真有创造力!看来你们都有成为环境设计师的资格。

  3、合作探究,总结规律。

  师:刚才我们借助借助线段图,找到了刀数与段数的关系,回忆一下刚才的方法,你能不能用同样的方法,去探究一下棵数与段数的关系?

  小组合作探究,教师巡视指导。

  4、交流规律。

  小组汇报,其他小组补充。教师根据汇报情况板书:

  两端都栽:棵数=段数﹢1

  只栽一端:棵数=段数

  两端都不栽:棵数=段数-1

  5、验证规律。

  师:我们再用线段图验证一下我们发现的规律。

  (1)画一条18厘米长的线段,两端都种,每隔3米种一棵,几段几树?

  (2)画一条20厘米长的线段。只种一端,每隔2米种一棵,几段几树?

  (3)画一条15厘米长的线段,两端都不种,每隔5米种一棵,几段几树?

  6、强化规律。

  请前排同学到台前扮演小树,模拟种树的三种情况,记忆种树的规律。

  师:刚才同学们用勤劳的双手和智慧的大脑,不仅设计了合理的植树方案,还探究出了植树的规律,真是太棒了,你们幸福吗?拍拍手吧!

  师:其实啊,植树问题也不只是与植树有关,生活中还有很多的现象与植树问题类似,我们把这类问题统称为“植树问题”。(板书课题)

  你能举出一些类似的例子吗?(指名说一说,如,路灯,栏杆,队形……)

  三、巩固练习,运用规律。

  师:要解决植树问题,首先要确定它是三种情况中的哪一种。下面我们来运用这些规律解决一些问题。(课件逐一出示)

  1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗?

  2、动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  3、为庆祝六一,学校要在教学楼前小路的两旁插上小旗子,每4米插一面,20米内可以插多少面小旗子?

  4、提高题。园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)先判断属于哪种情况,独立解决。

  (2)小组交流。

  (3)汇报。

  师:运用自己发现的规律去解决了问题,是不是一件幸福的事?我们拍拍手吧!

  四、回顾整理,反思提升。

  师:回忆一下,在我们这节课的学习中,是什么帮助了我们去发现了那么多规律?(线段图)线段图是我们在学习中经常用到的一种工具,同学们一定要把它当成好朋友噢。这节课老师感到很快乐,我收获了幸福,你们收获了什么?

  指名说一说。

  你认为谁的表现最值得你去学习?

  板书设计:

  植树问题

  两端都栽:棵数=段数﹢1

  只栽一端:棵数=段数

  两端都不栽:棵数=段数-1

植树问题教学设计3

  教材分析:

  “植树问题”在实际生活中应用比较广泛,它通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

  1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2.掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

  教学重难点:

  掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

  教具学具:

  绳子、挂图、泡沫、小树、题卡

  教学过程:

  一.创设情境,导入新课

  1.小游戏:

  点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种情况:4个、3个、2个)(解释“间隔”的意思)

  通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:通过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。

  2.导入新课:今天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

  二.新课探究:

  1出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在轻松愉快的生活化的课堂环境中学习数学。

  2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

  要求:(1)计算一共需要准备多少棵树苗

  (2)思考棵数与间隔数的关系。

  点评:学生亲自动手操作,并通过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的能力,把感性认识上升为理性认识。

  3.汇报结果:

  (1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

  (2)只种一端:50÷5=10(棵)结论:棵数=间隔数

  (3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

  4、总结(学生汇报教师书写):

  (1)两端都种:棵数=间隔数+1

  (2)只种一端:棵数=间隔数

  (3)两端都不种:棵数=间隔数-1

  点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种情况的理解。结论的得出也就水到渠成了。

  三、课堂练习

  1、做一做:

  (1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?

  (2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的.笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?

  2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

  (1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗(20分):学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上(50分):在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的积极性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,

  四、全课小结:这节课我们学习了什么内容?你还有什么疑问?(植树问题的三种情况)

  五、板书设计

  植树问题

  两端都种:棵数=间隔数+1

  只种一端:棵数=间隔数

  两端都不种:棵数=间隔数-1

  例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的

  一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  两端都种:50÷5+1=11(棵)

  只种一端:50÷5=10(棵)

  两端都不种:50÷5-1=9(棵)

  (1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗:学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上:在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  教学后记:

  本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

  一、动手操作、合作交流、探究规律:

  本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。

  二、练习的设计独特、新颖、有梯度:

  本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

  三、充分体现学生的主体作用及教师的主导作用:

  本节课,我通过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

植树问题教学设计4

  教材分析:

  植树问题”是人教版新课程标准实验教材五年级上册“数学广角”的内容。教材将“植树问题”分为两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等几个层次,这节课主要是教学两端都栽的植树问题,通过教学向学生渗透复杂问题从简单入手的思想。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,建立数学模型,再利用规律回归生活,解决生活实际问题。

  学情分析:

  从学生的思维特点看,五年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  设计理念:

  新课程标准要求,“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力”。因此在设计这节课时,我主要运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。

  一、通过观看图片为起点,以学生熟悉的手为素材,让学生感知间隔以及植树与数学的联系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。

  教学目标:

  一、知识与技能性:

  1.利用学生熟悉的生活情境,通过动手操作、小组合作的实践活动,让学生发现间隔数与植树棵数之间的关系。

  2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  3.能够借助图形,利用规律来解决简单植树的问题。

  二、过程与方法:

  1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  2.渗透数形结合的思想,培养学生借助图形解决问题的意识。

  3.培养学生的合作意识,养成良好的交流习惯。

  三、情感态度与价值观

  通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重难点:

  一、教学重点

  1、引导学生在观察、操作和交流中探索并发现两端都栽的情况下间隔数与棵数的规律,并能运用规律解决实际问题.

  2、运用规律解决类似的实际问题的方法。

  二、教学难点

  理解间隔与棵树之间的规律(棵数=间隔数+1、间隔数=全长÷间隔长)并能运用规律解决抽象的植树问题。

  教学方法:

  1、采用手指引出间隔,让学生理解间隔,引出与间隔有关的植树问题

  2、分组探究,发现规律,建立数学模型

  3、运用规律,解决问题

  4、回归生活,实际应用

  教学准备

  PPT课件 多媒体设备

  教学过程

  一、新授

  1.照片引发的思考

  师:植树是一个非常有意义的活动,它不仅能够绿化环境,净化空气,使我们在劳动中得到锻炼,而且,在植树的过程中还蕴含着很多很多的数学问题,怎么样有兴趣探讨吗?

  在学习之前先学习一下和植树问题相关的知识 出示图片(让学了解间隔和间距)

  师:课件:在100米长的小路一边种树,每隔5米种一棵。(两端都栽)一共需要栽多少棵? (指名大声朗读)

  师:(生读完)说说吧学校植树都有哪些要求(指名回答)

  师:每隔5米种一课

  师:每隔五米指的是什么(点名回答)

  生:间隔

  师:这个词不错(板书间隔)。间隔指的是什么?

  生:两棵树之间的距离

  师:学校要求两棵树之间的距离是多少?

  生:5米

  师:还有哪些要求吗?

  生:两端都要栽。

  师:这个要求也很重要(板书两端都要栽)

  说说是什么意思?

  生:两头都要栽

  师:你能用手比划比划吗?

  生:能

  师:还有什么要求吗?

  生:在100米的小路的一边

  师:强调一边就是一行

  让学生试着独自完成提前的题卡(老师巡视找到不一样的结果20、21、22让他们写在黑板上)

  师:做完了吗

  生:做完了

  师:做完了,看黑板,同样的要求出现了三种不同的'答案,同意20的举手21的举手22的举手!那学校到底该买多少树苗呢?

  三、合作探究、寻找规律

  1、小组探究,给予充分的时间。

  那咱们就4个人一个小组探究一下这个问题,听要求,画一画,摆一摆或者模仿实际种一种!开始吧(这时教师下去指导巡视)

  师:大家往前看,大家探究出来结果了吗?

  学校到底需要买多少棵树?谁来说?(点名回答)

  生:我们小组讨论的结果是21棵。

  师:同学们对于这个小组讨论的结果21棵你们同意吗?

  生:同意

  师:大家都是正确的

  你们小组使用什么样的方法得出结论的呢?

  生:画线段

  师:愿意展示给大家看吗?

  大家注意听,看看这位同学的方法和你们的方法有什么不一样的地方?

  生:总结先画一条线段表示100米,100除以5是20个间隔

  师:是20个间隔吗?你带着同学数一数。20个间隔没错,那一定是21棵树吗?

  生:最后一棵没加上

  师:你把什么当成小树啦?

  生:线段上的小端点

  师:数一数是21个吗?

  生:是

  师:听明白了吗?有什么想问问他的吗?

  还有没有其他的方法?

  生:摆铅笔,2根1个间隔3根2个间隔4根3个间隔5根4个间隔

  师:为什么加一呀

  生:最一开始的一根或者最后一根没算

  师:也就是学校要求两端都要栽

  师:当做两端都要栽的问题时 间隔数+1=棵数

  师:把复杂的问题简单化这种思想很可贵,发现规律,其他的组也是这么考虑的吧!

  看看这一规律的发现过程出示ppt

  棵数=间隔数+1

  间隔数=全长÷间隔长

  师:请同学们很自豪的把自己总结的规律读一遍。

  一共需要多少棵树苗。(学生操作、思考、教师巡视)

  师:有答案了吗?谁愿意展示一下你的劳动成果,你是怎样想的?你能在黑板上来“改一改”吗?

  师:6棵树几个间隔7棵呢99棵呢200棵呢

  8间隔几棵树呢50个间隔呢1000个间隔呢

  师:植树问题不仅能解决植树问题还能解决生活中的实际问题比如说安路灯

  在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?(找同学朗读)能解决吗?巡视过程中找41,82两个答案

  师:同学们算完了吗?看大屏幕(展示两个答案)你们同意那个?强调两旁 乘2

  这个同学的错误正好提醒了我们做这类题的时候一定要注意两旁 两旁需乘2同意吗同学们?

  师:今年雾霾挺严重的刚刚还因为雾霾放了假所以呀

  北辰区政府为了减少尾气排放,减少污染,方便市民出行,为北辰人民新开设一条公交线路604路,从新河桥到东站后广场共有18站,相邻两站的距离大约是700米,这条线路大约是多少千米?

  能解决吗?写在题卡上 做完了同桌互相检查(老师下去辅导)

  师:谁说说你是怎么样算的?

  生:18-1求出间隔数

  700×17=11900(米)

  11900米=11.9千米

  师:都对了吗?

  生:做对了

  师:你们家里都有钟表吗?听过钟声吗?你听当当这是几时?

  生:2时

  师:当当当,这是几时?几个间隔?在钟声里面也有数学问题一起看看谁能大声朗读?(出示ppt)广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?

  师:能试着解决吗》做在题卡上,有困难了放在我们小组内解决,看看能不能解决。(巡视)同学们有结果了吗?哪个小组愿意汇报?

  生:5-1=4 (个) 8÷4=2 (秒)12-1=11(个)11×2=22(秒)

  师:同学们说得真好

  总结:这节课大家都有什么收获?

  两端都要植:棵数=间隔数+1

  间隔数=棵数-1

  板书设计:

  植 树 问 题

  两端都栽 棵树 间隔数

植树问题教学设计5

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?预设:5根

  教师:那手指与手指间的空隙叫什么呢?预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?预设:4根间隔

  教师:4根手指之间有几个间隔呢?预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?教师:告诉我们哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的`单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

  教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?(请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?六、布置作业

植树问题教学设计6

  教学目标:

  1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

  2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:

  发现并理解两端都栽的植树问题中间隔数与棵数的规律。

  教学难点:

  运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:

  课件、直尺、学习纸。

  教学过程:

  (一)创设情境,引入新课

  教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)

  教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)

  (二)充分经历,探究新知

  1、大胆猜测,引发冲突。

  (1)读一读,说一说。

  课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:

  “每隔5米栽一棵”是什么意思?

  使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。

  “两端要栽”是什么意思?“一边”是什么意思?

  可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?

  (2)猜一猜,想一想。

  让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。

  教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?

  引导学生用画线段图的方法进行验证。

  (设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)

  2、借助操作,探究规律。

  (1)初步体验,化繁为简。

  教师:我们用一条线段表示100米的小路,每隔5米栽一棵,大家可以用自己喜欢的图案表示树,每隔5米种一棵,每隔5米种一棵,照这样一棵一棵种下去……是不是很麻烦?

  教师:为什么觉得很麻烦?

  学生:因为100米里面有20个5米,太多了。

  教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。

  (2)教师演示,直观感知。

  教师演示课件,边演示边说明。

  教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)

  教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?

  引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。

  (设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)

  (3)动手操作,初步体验。

  让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。

  教师选择有代表性的作品进行展示,为什么这样画?重点让学生说一说自己的想法:你是怎样画的?为什么这样画?一共要栽多少棵树?

  教师:虽然这些同学选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你能找到吗?

  引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。

  (4)合理推测,感知规律。

  教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。

  学生填写表格,教师巡视,对个别学生进行指导和说明。

  学生填写完表格后,小组交流汇报结果。

  (5)归纳概括,理解规律。

  教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。

  学生汇报自己的发现。

  引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。

  教师:为什么两端都栽树,棵数比间隔数多1?

  学生回答后,教师借助课件演示帮助学生进一步直观理解。

  (设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)

  (6)即时巩固,强化规律。

  教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?

  (设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的.棵数和间隔数之间的关系。)

  3、运用规律,验证例1。

  教师:回到例1,在100米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?

  教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?

  学生尝试列式解决问题,教师巡视,有针对性地指导。

  全班汇报交流,主要让学生弄清楚:100÷5=20是什么意思?为什么还要用20+1=21(棵)?

  (设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)

  (三)回归生活,实际应用

  1、“做一做”第1题。

  教师:这道题里没有植树呀,能用我们今天学的方法解决吗?

  使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。

  教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。

  2、练习二十四1、2、3题。

  让学生进一步感受到植树问题在生活中的广泛应用。

  3、练习二十四第4题。

  教师:这一题与例题有什么不同?

  老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。

  教师:你是怎样计算的?为什么用36减1?

  (设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)

  (四)课堂小结,畅谈收获。

  反思:

  通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。

  一、创设愉悦氛围,让游戏走入情境。

  从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。

  二、注重自主探索,让体验走入方法。

  体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。

  三、倡导知识运用,让建模走入生活。

  “数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。

  但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。

植树问题教学设计7

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。

  教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?

  预设:5根

  教师:那手指与手指间的空隙叫什么呢?

  预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?

  预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?

  预设:4根间隔

  教师:4根手指之间有几个间隔呢?

  预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?

  预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。

  引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?

  教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?

  预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)

  预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)

  预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的'两个公式)

  教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

  (请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?

  教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?

  思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?

  六、布置作业

植树问题教学设计8

  教学目标:

  1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

  2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  一、谈话引入,明确课题

  母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)

  大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  ①课件出示图片。

  介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?

  出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a.指名读题,从题中你了解到了哪些信息?

  b.理解“两端”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

  说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

  ③算一算,一共需要多少棵树苗?

  ④反馈答案。

  方法一:1000÷5=200(棵)

  方法二:1000÷5=200(棵)200 +2=202(棵)

  方法三:1000÷5=200(棵)200 +1=201(棵)

  师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?

  2.简单验证,发现规律。

  ①画图实际种一种。

  课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……

  师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

  师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?

  ②画一画,简单验证,发现规律。

  a.先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段4棵)

  b.跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段6棵)

  c.任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

  (板书:2段3棵;7段8棵;10段11棵。)

  d.你发现了什么?

  小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

  (板书:两端要种:棵树=段数+1)

  ③应用规律,解决问题。

  a.课件出示:前面例题

  问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

  1000÷5=200这里的200指什么?

  200 +1=201为什么还要+1?

  师:这个“秘方”好不好?

  通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?

  b.解决实际问题

  运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)

  问:这道题是不是应用植树问题的规律解决的?

  师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?

  三、合作探究,“两端不种”的规律

  1.猜测“两端不种”的规律。

  猜测结果是:两端不种:棵树=段数-1

  师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。

  要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?

  2.独立探究,合作交流。

  3.展示小组研究成果,发现规律,验证前面的猜测。

  小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?

  4.做一做。

  ①在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)

  ②师:同学们注意看,这道题发生了什么变化?

  课件闪烁:将“一侧”改为“两侧”

  问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。

  小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

  四、回归生活,实际应用

  1.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

  8÷2=4(段)

  4—1=3(次)

  问:为什么要—1?这相当于今天学习的植树问题中的那种情况?

  2.我们身边类似的数学问题。

  ①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?

  ②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?

  3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

  五、全课总结

  通过今天的'学习,你有哪些收获?

  师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

  “植树问题”说课

  “植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:

  1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

  2.学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  本课教学分四大环节:

  一、谈话导入,明确课题

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  通过创设在公路中间绿化带中植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)

  2.简单验证,发现规律。

  在举简单例子画一画这个环节,安排了两个小层次:

  ①按老师要求画。

  ②学生任意画。

  通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。

  3.应用规律,解决问题。

  ①应用规律,验证前面例题哪个答案是正确的。

  ②应用规律,解决插多少面小旗的问题。

  这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。

  三、合作探究“两端不种”的规律

  1.猜测“两端不种”的规律。

  猜测是一种培养学生推理能力的好方法。学生已经发现了“两端要种”的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。

  2.独立操作,探究规律。

  有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。

  四、回归生活,实际应用

  设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。

植树问题教学设计9

  【教学目标】

  知识目标:

  1.利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。

  2.让学生自主探索、讨论、交流,使学生发现并理解植树问题(两端要栽)的解题规律,并利用规律解决一些实际问题。

  能力目标:

  1.让学生经历分析、思考、解决问题的整个探究过程,并从中学习一些解决问题的方法和策略。

  2.通过探索间隔数与植树棵数之间的规律,初步体会化复杂为简单和一一对应的数学方法。

  情感目标:培养学生的分析意识,养成良好的交流习惯,感悟日常生活中处处有数学,体验学习的成功喜悦。

  【教学重点】:引导学生发现棵数与间隔数的关系。

  【教学难点】:理解间隔与棵数之间的规律并运用规律解决问题。

  【教学准备】:课件、学生用尺子、表格等。

  【教学过程】:

  一、谜语导入,引入新课

  师:同学们,你们喜欢猜谜语吗?

  生:喜欢。

  师:今天啊,老师带来一个谜语想和大家一起猜一猜,请看。两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。它是什么呢?你说说看?

  生:他是手。

  师:哦,他就是我们的手。我们的手作用可真大,又会写又会画还会算,而且我们的手上还有许多的数学奥秘,仔细看老师的手,你看到了数字几呢?

  生:5.

  师:哦,你们都看到了数字五,那你还能看到数字几呢?

  生:我看到了数字4、3、2、1。

  师:哦,你说的数字4、3、2、1表示的是什么啊?能告诉我们吗?

  生:手指的.个数。

  师:哦,手指的个数。那我们说的五也是手指的个数,对吧。诶,除了手指的个数外你还能看到什么呢?

  生:还能看到手指之间的间隔。

  师:哦,手指之间还有一个个的间隔。同学们,在老师的手上五个手指之间到底有几个间隔呢?

  生:4个。

  师:数一数。1、2、3、4,恩,还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?

  生依次回答。

  师:恩,一个间隔。同学们,你们发现了手指数和间隔数之间的关系了吗?手指数比间隔数怎么样啊?

  生:手指数比间隔数多一。

  师:说得真完整。谁还说?

  生2:手指数比间隔数多一。

  师:哦,那间隔数比手指数呢?

  生3:间隔数比手指数少一。

  师:哦,谁还说?

  生4:间隔数比手指数少一。

  师:同学们,你能用一个算式来表示手指数和间隔数之间的关系吗?手指数等于什么呢?

  生1:手指数等于间隔数加一。

  师:哦,谁还说?

  生2:手指数等于间隔数加一。

  师:恩,还谁会说?好,你也来试试。

  生3:手指数等于间隔数加一。

  师:很好,那么间隔数等于什么呢?

  生1:间隔数等于手指数减一。

  师:恩。

  生2:间隔数等于手指说减一。

  师:恩,真聪明。好了,同学们,我们每个人啊,都有两件宝贝,一个呢是我们的双手,一个是我们的大脑。我们利用我们的大脑发现了这么多手上的奥秘,看来我们的数学真是无处不在啊。

  二、探究规律实现目标

  1、多媒体出示学校操场

  师:这里是哪里?

  生:操场!

  师:看来同学们对我们的学校真是非常熟悉,一下就认出了这就是我们的操场。为了美化我们的学校,校长打算在100米的操场小路上植树,可不是随便种的哦,校长可是有要求的。今天我们就要利用我们的双手和大脑一起来研究植树中的数学问题。-------植树问题。(板书课题)

  出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共要栽多少棵树?

  师:读一读,在题中你读到哪些信息?谁来说一说?

  生:……………………

  师:一边表示什么?全长100米表示什么?每隔5米栽一棵表示什么意思?

  师:什么是两端都要栽?

  生:……………………..

  (1)师小结:用图演示说明:一边是小路的一侧,指左边或者右边,全长100米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

  (2)算一算,一共要栽多少棵树?

  (3)反馈答案:

  方法1:100÷25=20(棵)

  方法2:100÷25=20xx+2=22(棵)

  方法3:100÷25=20xx+1=21(棵)

  (4)师提出疑问:现在出现了三种答案,到底哪种答案是正确的呢?用什么方法来验证?

  三、自主探究,发现规律

  1.师用课件出示下表说:同学们想的办法真多,我们可以选择画线段图来验证。但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究、验证。如本题中假设路长只有5米、10米、15米、20米…每5米栽一棵(两端要栽),可栽几棵呢?下面我们一起来画线段图来分析、研究一下。(板书:复杂——简单)

  总长

  (米)

  间距

  (米)

  线段图例

  (图上厘米代表实际米的距离)

  间隔数

  (段)

  棵数

  (棵)

  5

  5

  10

  5

  15

  5

  20

  5

  ..

  ..

  ..

  ..

  2.先明确表意,再让学生探索完成上表中的内容。

  1.全班交流汇报表中内容。

  2.小组讨论:总长、间距和间隔数之间有什么关系?间隔数和棵数之间呢?

  3.把上表一分为二,让学生交流展示讨论结果。

  (1)出示下表交流汇报总长、间距和间隔数之间的关系。并借助数据,帮助学生理解这一关系的意思。(板书:总长÷间距=间隔数)

  总长

  (米)

  间距

  (米)

  间隔数

  (段)

  5

  5

  10

  5

  15

  5

  20

  5

  ..

  ..

  ..

  (2)出示下表交流汇报间隔数和棵数之间的关系。并借助表中数据,帮助学生理解这一关系的意思,但关键让学生理解为什么棵数比间隔数多1,渗透对应思想。(板书:间隔数+1=棵数)

  线段图例

  (图上厘米代表实际米的距离)

  间隔数

  (段)

  棵数

  (棵)

  1

  2

  2

  3

  3

  4

  4

  5

  ..

  ..

  ..

  4.教师小结

  (1)同学们非常能干,通过猜测、验证、讨论发现了植树问题中一个非常重要的规律,那就是如果再一条路上植树,两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1,而总长除以间距等于间隔数。对这个规律有没有不同意见?有没有不同说法?

  (2)填一填,反馈规律。

  ()×间隔数=总长棵数–1=()

  总长÷()=间距()-()=1

  四、活用规律,解决问题

  (一)回归疑问,初用规律

  以表格的形式摘要出例题1的重要信息后,师说:现在我们用刚得到的规律验证一下课前同学们做例题1的三种解法,哪种正确呢?说说你是怎样想的?

  总长

  (米)

  间距

  (米)

  间隔数

  (段)

  棵数

  (棵)

  100

  5

  (二)基础练习,再用规律

  师:同学们真会动脑筋!通过简单的例子,发现了规律,应用这个规律解决了复杂的问题。以后遇到“两端要种,求棵数”的植树问题,知道该怎么做了吗?请试一试:

  1、把下表补充完整

  总长

  (米)

  间距

  (米)

  间隔数

  (段)

  棵数

  (棵)

  100

  5

  20

  21

  200

  5

  200

  10

  1000

  8

  (三)深化练习,拓展规律

  师:同学们真能干!其实我们的生活中还存在着许多类似植树问题的现象。

  1、说一说,生活中的哪些情况类似植树问题呢?

  2、课件依次演示:

  不容易看见却能“想象”的树

  看不见却能“听得见”的树

  师说明:在数学上,我们把这类问题也归为“植树问题”。

  3、巧用规律,解决生活中类似问题

  (1)请你选一选:

  这排礼炮共有29个间隔,合()门礼炮。

  ①28门②29门③30门

  (2)下面哪个算式是正确的?

  一列共有25张凳子,有()个间隔?

  ①25+1=26个②25个③25-1=24个

  (3)公交车从东站到西站全长18千米,相邻两站的距离是2千米。一共有多少个站点?

  (4)一盒9响鞭炮,当听到第一个爆炸声开始计时,到第二声响起时,经过2秒钟。当听到最后一声响起时共经过几秒钟?

  五、拓展

  教师总结延伸:同学们这节课中运用化复杂为简单的数学思想方法发现了两端都栽的植树问题中的规律,并能利用规律解决生活中类似的实际问题。其实,植树问题还有一端栽一端不栽、两端都不栽、封闭图形,如正方形、圆形花坛等情况,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。继续努力吧!

  六、全课总结,理顺知识

  这节课你有什么收获?

植树问题教学设计10

  一、教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。

  二、教材目标:

  1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。

  2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。

  3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。

  三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。

  四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。

  五、教学准备:学习单、多媒体课件、小树和小路模型。

  六、 教学过程:

  (一) 问题导入:

  出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?

  教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”

  (二)探究新知:

  1.队列问题:

  出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的关系,再次对应“间隔数+1”

  并出示课题。

  2.植树问题:

  (1)体会“化繁为简”思想:

  问题导入:同学们到达目的.地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?

  突出矛盾:数字太大,不易思考,引导学生转换较小的数。

  明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)

  (2)设计三种植树方案:

  引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。

  ①学生活动,教师巡视。

  ②汇报、展示:

  ③小结:组织学生对不同方案进行命名,突出其主要特征。

  教师板书:两端都种、只种一端、两端不种

  (3)探究规律:

  ①求间隔数:

  教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。

  在没有植树的棵数时,探究间隔数与全长、间隔的关系。

  组织学生独立思考,借助学具、线段图等形式探究规律

  a:学生思考并摆学具或画线段或列算式。

  b:汇报:

  ②探究间隔数与棵数的关系:

  开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?

  小组合作完成探究,活动要求:

  1)自己选择适合的间隔长度,四人小组合作完成记录表。

  2)小组选择一种植树方式进行探究。

  3)可以借助摆学具、画线段、数手指或列算式的方式。

  a:学生小组活动,教师巡视。

  b:学生汇报发现规律,教师板书。

  c:升华:

  三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。

  d:应用:

  老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?

  (三)巩固提升:

  1.选一选:

  下面每一题相当植树问题的哪一种情况?

  (1)音乐中的“五线谱”( )

  (2)衣服上的纽扣( )

  (3)成语“一刀两断”()

  (4)自鸣钟九点报时的钟声( )

  A.两端都种 ; B.只种一端; C.两端不种。

  2. 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3. 小法官:

  (1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )

  (2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )

  4.学校一条大路的一边共插了20面彩旗。

  (1)如果使两面彩旗中间放一盆花,一共要放多少盆花?

  (2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?

  (四)课堂总结:

  师:今天我们学习了什么?你有什么收获?

  生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。

  教学反思

  通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。

植树问题教学设计11

  教学内容:

  《植树问题》

  教学来源:

  人教版小学数学教材第九册第七单元《植树问题》

  教学对象:

  五年级学生

  备课人:

  张金玲

  基于标准:

  数学广角的教学目标可概括为以下几点:

  1、 感悟重要的数学思想方法;

  2、 运用数学的思维方式进行思考,增强分析和解决问题的能力;

  3、 在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。

  教材分析:

  《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。

  学情分析:

  学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  学习目标:

  1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的'情况下间隔数与棵数之间的关系。

  2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。

  评价任务:

  任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。

  任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。

  【学习重点】:发现棵数与间隔数的关系。

  【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。

  【教学准备】:课件、小组学习单

  【教学过程】:

  一、导入新课

  1、猜谜语,直观认识间隔

  新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)

  同意的举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)

  哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。

  手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)

  我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)

  你发现什么了吗?(生说)

  的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。

  二、探究规律 实现目标

  1、例题探究

  说起植树问题我们就先从植树谈起吧。请看例题。

  出示例题1:在全长1000米的小路一边植树,每隔5米栽一棵(两端都栽)。一共要栽多少棵树?

  A、从题中你能知道哪些信息?谁来说一说?生说,师画。

  它们都表示什么,大家知道吗?生说:一边表示只在小路的一侧种树。全长1000米表示第一棵树和最后一棵树之间的距离是1000米。每隔5米栽一棵表示棵与棵之间的距离是5米……

  师小结:

  一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

  B、算一算,一共要栽多少棵树?反馈答案:

  方法1:1000÷5=200(棵)

  方法2:1000÷5=200 200+2=22(棵)

  方法3:1000÷5=200 200+1=21(棵)

  疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)

  三、自主探究,发现规律

  1、化繁为简探规律

  是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)

  是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。

植树问题教学设计12

  教学分析:

  “植树问题”是人教版五年级上册数学广角中的一个教学内容,解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。即使是关于一条线段的植树问题,也可能有不同的情形,例如,两端都要栽,只在一端栽另一端不栽,或是两端都不栽。?

  例1是探讨关于一条线段的植树问题并且两端都要栽的情况,根据教材的意图,要让学生经历猜想、试验、推理等数学探索的过程,从简单的情况入手解决复杂的问题,让学生选用自己喜欢的方法来探究栽树的棵树和间隔数之间的关系,并启发学生透过现象发现规律,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用。

  学生分析:

  由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此为了让学生能更好地理解本单元的教学内容,在教学过程中点对教材进行适当的整合,并充分利用学生原有的知识和生活经验,来组织学生开展各个环节的教学活动。

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:

  理解“间距数1=棵数,棵数-1=间距数

  教学准备:

  课件10厘米15厘米20厘米的纸条三根,小棒20根。

  教学过程:

  一、设计情境,引入新课。

  1、教学“间隔”的`含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  (课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、理解间隔数,引入课题。

  树木不仅美化环境,还能净化空气。在一条直线上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

  二、自主探究,找出规律。

  1、出示例题,引出问题。

  师:(课件出示例题。)

  师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?

  (课件解释关键词语,加深学生理解)

  师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

  2、动手操作,发现规律。

  (1)师:长100米的小路,数字有点大,当我们遇到复杂问题的时候,可以换成一个简单的例子来进行,请同学们看要求。(课件出示要求)

  生活动,并思考:

  1、每条小路上的间隔数是多少?

  2、棵数是多少?

  3、间隔数和棵数之间是什么关系?

  小组同学互相交流自己的发现。

  师指导。

  (2)生汇报活动结果及自己的发现(实物投影展示)

  生初步得出结论:棵树比间隔数多1。

  3、师生小结,得到规律。

  师:老师把同学们的活动过程展示出来,并用线段图来表示我们的活动结果,请同学们看。

  从这个表格中,我们更可以容易看出,间隔数和棵数之间是什么关系?生回答师板书:

  间隔数=棵数-1棵数=间隔数1。

  4、回顾例题,解决问题。

  师:现在我们就用学到的知识来解决例1的问题。生独立解决,共同评价。

  三、巩固新知(课件出示):

  1、填一填。

  让生独立看要求,说说题目中有哪些数学信息,如何解决。

  2、园林工人沿着公路一侧植树,每隔6米栽一棵小树,一共栽了21棵。从第一棵到最后一棵的距离有多远?

  3、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

  (4)学生独立解答并汇报:

  4、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  5、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?

  四、师生共总结。

  这节课我们学到了什么知识,你有什么收获?

植树问题教学设计13

  教学目标:

  1、通过探究发现一条线段上两端都种、只种一端、两端不种三种情况植树问题的规律。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。

  教学重、难点:

  发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。

  教学过程:

 一、创设情境——培养意识

  1、师:同学们好!一起来看两组画面。

  (给学生播放荒漠化严重的和绿化优美的两组图片。)

  师:看了这两组画面,你更喜欢哪一种呢?

  师:怎样才能拥有这样美丽的环境呢?

  生:植树。

  师:植树造林,保护环境,让我们拥有一个充满鸟语花香的绿色花园是我们每个人都应尽的义务!

  师:说到植树,大家知道吗?在我们数学王国里,植树可是有一定的学问的,这节课我们就来探讨“植树问题”。——板题

  2、出示教学目标

  3、师:见过路边种树吗?一般情况下,每两棵树间距离怎样呢?(相等)一般情况下路边植树每两棵树之间的距离都是相等的,我们也可以叫做等距离植树。

  师:在路的一边等距离地植树会有几种情况呢?大家想不想亲手种种看?

  二、动手种树——探讨规律

  1、动手“种”树

  师:大家先看老师为大家准备的材料……(师介绍)

  出示操作要求:在路的一边,等距离植树,种完后小组里交流看看有几种情况?

  学生动手植树,师巡视。

  2、交流方案

  小组上台展示自己组的种树方案。

  两端都种

  两端不种

  只种一端

  3、仔细观察,每棵树之间都有间隔,那么植树的棵数跟间隔数之间有什么联系?

  生仔细观察,得出猜想:两端都种棵数=间隔数+1

  两端不种棵数=间隔数-1

  只种一端棵数=间隔数

  三、验证规律

  1、师:通过仔细观察,我们得出了自己的猜想。但是,每一种猜想在没有验证之前,也只能是一种猜想,我们只有通过验证,才能让猜想成为科学,对于我们刚才总结出的规律也必须通过验证才能得出正确结论。下面,让我们一起动手来验证我们的猜想。

  2、完成验证表格。

  师出示:这是一张验证表格,就请大家在小组内共同合作,一起探究,并展示你们组总结出的规律。(出示验证事项)

  3、小组合作探究。

  4、展示。

  分三种情况汇报。

  5、梳理规律

  师:同学们,在一条路的一边植树的三种规律我们都找出来了,我们一起来研究一下,它们之间有没有什么关系?

  相同点:都与间隔数有关

  不同点:两端都种要用间隔数+1;只种一端就等于间隔数;两端不种就要用间隔数-1

  师:这三种情况是不同的,我们在解决问题时,要注意具体情况具体分析。

  四、解决问题

  师:知道在路的一边植树有三种情况,对于下面的信息,你会提出什么样的数学问题呢?

  1、处理信息

  问题情境:这是实验小学刚建好的一条校道(配图),看到这光秃秃的校道你会想到什么呢?

  生:种树!

  出示信息:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵

  师:根据这些信息你会提什么数学问题呢?

  生:一共可以种多少棵树?

  得不完整例题:

  实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,一共需要多少棵树苗?

  师:看着这道题,谁有话想说吗?

  生1:两端都种

  得完整例题:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?

  师:受他的启发,还能提出什么样的问题?

  生2:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?

  生3:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?

  师:三种情况大家都想到了。大家再看看这条校道,你认为采取哪种方案更合适一些呢?

  生:两端都种

  2、抽取问题

  出示例题:(配图片)

  实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?

  师:愿意帮学校算算吗?

  3、学生试解。

  4、汇报交流。

  生汇报,师:能说说你的解题思路吗?

  师:刚才我们从小的数据入手,探讨出规律,然后再用规律来解决数据大的问题。这种思路正是数学上常用的'“以小见大”。

  师:大家学会了这种方法吗?我们再来考验考验自己的掌握情况好不好?

  5、探讨只种一端

  师:如果学校想在这路的末尾建一座供师生休息用的小亭子,那又应该选用哪一种植树方案更合理?

  生:只种一端。

  (实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?)

  学生试解。

  6、探讨两端不种

  师:我们再接再厉,学校后来还要在这条校道的另一端筑一个墙报,请大家想想,应采用哪种方案更合适呢?

  生:两端不种。

  (实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?)

  学生试解。

  五、小结方法——提升认识

  1、探讨方法

  师:大家能通过自己的努力把这么一道新的问题解决,我们应该感到高兴!但是老师认为还有更重要的方法更需我们去总结!

  师:大家再回头看看,我们是怎样一步一步把植树问题给解决的?

  (动手操作——提出猜想——画图验证——得出规律——解决问题)

  2、阅读课本

  (1)阅读例1

  师:今天我们学习的就是课本117页开始的数学广角,请大家打开书本。

  师:课本上的同学们遇到了什么问题,他们又是采取什么样的办法来解决的?

  生:画图,找规律。

  师:真是好方法!大家掌握了吗?

  (2)阅读例2

  师:阅读118页例2,看看课本中的孩子又遇到了什么问题,你能帮他们解决吗?

  生完成,交流。

  六、拓展练习

  1、听说大家聪明能干,又乐于助人市政规划局的同志找来了,他呀,想请大家帮个忙,(出示119页做一做1)

  2、生尝试解答。

  3、全班交流。

  七、全课小结

  师:通过今天的学习,你有什么收获呢?

  生畅谈自己的收获。

  师小结:收获方法比收获知识更重要,祝贺大家!

  板书设计:

  植树问题

  两端都种棵数=间隔数+1

  两端不种棵数=间隔数-1

  只种一端棵数=间隔数

植树问题教学设计14

  课题

  植树问题(二)

  课时

  1

  班级

  四年级

  编写者

  林英

  一、教材内容分析

  人教版四年级下册第8单元书120页

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、使学生理解并掌握一个封闭图形的植树问题的规律。

  2、学会用不同的方法分析具体的数学问题。

  3、经历数学问题的探究过程,体验用不同的思路解决问题的方法。

  4、沟通数学知识与生活之间的密切联系,激发学生的学习兴趣,培养学生的动手操作能力,发展学生的发散思维。

  三、学习者特征分析

  学生已经初步掌握关于一条线段的.植树问题,但是,这个内容学生理解起来还是比较困难,特别是中下的学生。因此,在这基础之上,要让学生借助围棋盘,动手摆一摆,通过小组合作来一起探讨封闭曲线中的植树问题。

  四、教学策略选择与设计

  自主探索合作交流总结规律

  五、教学环境及资源准备

  投影仪,每小组一副围棋。

  六、教学过程

  教学过程

  教师活动

  预设学生行为

  设计意图及资源准备

  一、创设情境

  教师投影出示教材第120页例3情境图。

  教师:图上两位小朋友在干什么?(下围棋)

  你对围棋有哪些了解?

  师:在这小小的围棋盘下可有不少数学问题呢!

  板书课题:植树问题(二)

  让学生畅所欲言。

  吸引学生的注意力,激发学生的学习兴趣。

  二、探究新知

  (1)教师投影出示围棋盘。

  师:在围棋盘上一个点可以放一个子。

  (2)出示例3。

  围棋盘的最外层每边能放19个棋子。最外层一共可以摆多少个棋子?

  师:同学们算得都正确。还有其他的方法吗?

  师:你发现了什么?

  学生通过分析比较会发现:围棋盘最外层摆的棋子数等于最外层每两个棋子间的间隔数。

  (1)学生读题,理解题意。

  (2)动手在围棋盘上摆一摆,数一数,小组合作探究。

  (3)学生汇报。

  通过动手摆,认真的观察判断,分析比较,从中发现规律。培养学生的发散思维,动手能力。

  三、反馈应用

  (1)教材第121页做一做第1题。

  教师投影出示情境画面,出示第1题。

  (2)教材第121页“做一做”第2题。

  ①讨论:可以怎么摆放?

  ②最少需要多少盆花?

  (3)教材第121页“做一做”第3题。

  学生读题,理解题意。

  学生汇报。

  学生在小组中合作完成,然后教师指名汇报,全班集体订正。

  四、全课小结

  通过今天的学习活动,你有什么收获?

  板书设计:植树问题(二)

  例3:

  a.19×2+17×2=72(个)

  (19+17)×2=72(个)

  b.18×4=72(个)

  c.17×4+4=72(个)

  封闭图形:植树棵数=间隔数

植树问题教学设计15

  教材分析

  两端植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。

  学情分析

  让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现绿化的重要性。

  教学目标

  1、理解在线段上植树(两端栽)的情况中“棵数=间隔数+1”的关系。

  2、利用线段图理解“棵数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距的关系,解决生活中的实际问题。

  3、能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意。

  教学重点和难点

  [教学重点]:用不完全归纳法总结并理解“点数=间隔数+1”。

  [教学难点]:掌握用线段图解决生活中的数学问题的'方法。

  教学过程

  一、创设情境

  1、听唱歌曲《春天在哪里》,让学生感受春天的美好。

  2、比较两组图片的不同,让学生说出植树对人类的重要意义,引出本节课所要学习的的植树问题。

  二、探究新知

  (展示题目)

  (一)宝塔山下有一条长20米的小路,一边等距离植树,两端都栽,可以怎样植?用线段图表示你的方法。(小组讨论)、

  1、学生画线段图表示,教师巡视指导。

  2、指名回答。

  3、教师把学生的想法用表格出示如下:

  4、引导总结:

  5、生:手指线段图

  师:在线段图上,点数和间隔数又有怎样的关系呢?

  生:点数=间隔数+1

  6、师:总长与间距和间隔数又有怎样的等量关系呢?

  生:总长=间距×间隔数

  7、尝试应用:

  三、巩固新知

  四、小结本节内容

  五、教学作业

《植树问题教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【植树问题教学设计】相关文章:

《植树问题》教学反思04-06

植树问题教学反思05-16

植树问题教学反思06-19

小学植树问题教学反思08-09

“解决问题的策略”教学设计05-09

《走,我们去植树》教学设计01-27

《小数除法——解决问题》教学设计12-11

连除问题教学反思12-24

二年级数学《解决问题》教学设计06-28

教学设计模板-教学设计模板07-14

植树问题教学设计

  作为一位无私奉献的人民教师,就有可能用到教学设计,借助教学设计可以提高教学效率和教学质量。那要怎么写好教学设计呢?以下是小编为大家整理的植树问题教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

植树问题教学设计

植树问题教学设计1

  设计说明

  “植树问题”对于学生来说比较抽象,学生接受起来较为困难,本节复习课,就是让学生在已有知识的基础上,巩固所学,理清思路,让学生的数学能力得到进一步的提高。

  1.通过对比,提高学生解决问题的能力。

  植树问题的复习分为三个类型:两端都栽树、两端都不栽树和在封闭路线上栽树。由于它们之间都存有共性:都隐藏着间隔数与棵数之间的关系,因此,本节课把所有类型的植树问题归纳在一起,通过观察比较,得出公式,总结这一类问题的解决方法和策略。最后能够运用所学知识解决所有和植树问题相关的实际问题。

  2.通过变式练习,培养学生灵活运用所学知识的`能力。

  在学生进一步明确了三个类型的“植树问题”的解决方法和策略之后,设计了不同难易程度的练习,让学生根据前面发现的规律来解决。同时做好植树问题和生活实际问题的对比沟通,培养学生的应用意识,提高学生学习数学的兴趣,提高学生运用所学知识解决实际问题的能力。

  课前准备

  教师准备:PPT课件、课堂练习卡

  学生准备:课堂练习卡

  教学过程

  ⊙创设情境,导入复习

  第七单元,我们共同研究了“植树问题”,想一想,“植树问题”存在几种情况,它们的关系是怎样的呢?指名回答后,老师小结。

  (1)在线段上栽树。

  ①两端都栽:棵数=间隔数+1

  ②两端都不栽:棵数=间隔数-1

  (2)在封闭路线上栽树:棵数=间隔数。

  设计意图:通过引导学生进行知识回顾,进一步理解植树问题中存在的规律,为下一步分层练习作铺垫。

  ⊙分层练习,强化提高

  1.基本练习。

  (1)在练习本上画一条10厘米长的线段,每隔2厘米画一朵小花,两端都要画,一共可以画多少朵小花?

  (2)一个堤坝长200米,沿堤坝栽一行小树,每隔10米栽一棵,只有一端栽,一共可以栽多少棵?

  (3)在一段公路的一边栽95棵树,两端都栽,每两棵树之间相距5米,这段公路全长多少米?

  (4)公园大门前的公路长80米,要在公路两边栽上树,每两棵树相距8米(两端也要栽)。园林工人共需要准备多少棵树?

  (学生自由解答,小组内交流,然后教师组织全班交流,指名学生回答,其他同学纠正错误)

  师:同学们真聪明,计算得这么准确,下面老师又为你们准备了一些题目,有没有信心完成?

  2.综合练习。

  一个挂钟,1时敲1下,3时敲3下,12时敲12下,当这个挂钟3时时敲3下共用了4秒钟。当12时时敲12下要用多少秒?

  (1)读题明确题意。

  (2)分组合作探究。

  设计意图:通过分层练习,层层深入地回顾了解决问题的步骤和方法,从而进一步提高了学生的解题能力。

  ⊙全课总结

  通过这节课的复习,我们对植树问题进行了回顾,大家有什么收获呢?

  ⊙布置作业

  1.校园里有一段长80米的路,在路的一侧栽松树,每隔5米栽一棵,一共可以栽多少棵?

  2.要在100米的马路两旁栽树,每隔5米栽一棵,一共可以栽多少棵?

  3.一个圆形花圃周围长40米,沿花圃一周每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?

  4.一个小朋友以相同的速度在路上行走,从第1棵树走到第17棵树需要16分钟。如果这个小朋友走了30分钟,应走到第几棵树?

植树问题教学设计2

  教学目标:

  1、知识与技能:通过合作探究,动手实践,让学生在做数学的过程中经历由现实问题到构建数学模型的过程,理解并掌握植树棵数与段数之间的关系。

  2、过程与方法:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、初步探究、合作交流的能力,并培养学生针对不同问题的特点灵活解决问题的能力。

  3、情感态度价值观:让学生在探索、构建模型、用模型的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

  教学重难点:

  引导学生在观察、操作和交流中探索并发现段数与棵数的规律。并能运用规律解决实际的问题。

  教学准备:课件,纸条,小刀。

  教学过程:

  课前热身:

  师:在上课之前,老师了解了一下,发现我们班很多同学都喜欢唱歌,现在离上课还有一点时间,我们一起来唱《幸福拍手歌》好吗?(播放课件视频,齐唱。)

  师:如果感到幸福你就拍拍手,是双手创造了我们幸福的生活。老师也相信,只要我们在用双手辛勤地创造着,就一定会收获到幸福,今天我们就一起用双手去创造,去收获。

  一、创设情境,生成问题。

  1、猜谜激趣。

  师:同学们喜欢猜谜语吗?我现在要给同学们出一个哑语,谜底是一个成语,同学们看仔细。(师找一个学生配合,用小刀切断纸条。)

  生:一刀两断。

  教师板书:1刀2段,并画出线段图表示。

  师:切两刀呢?(生猜测,师演示,指名画线段图)

  学生回答:三刀呢?五刀呢?(自己画出线段图验证。)100刀呢?

  师:你发现了什么规律?

  学生说,教师板书:刀数=段数-1。

  2、提出问题。

  师:同学们真聪明,可以帮我一个忙吗?出示设计要求:

  在操场边,有一条20米长的小路,学校计划在小路的一边种树,请按照5米一棵的要求,设计一份植树方案。

  师:从这份要求上,你能获得哪些信息?

  (20米长的小路,一边,每隔5米种一棵。)

  师:每隔5米是什么意思?

  (每两棵树之间的距离是5米,每两棵树之间的距离相等。)

  二、探索交流,解决问题。

  1、设计方案,动手种树。

  师:了解了已知条件,请同学们以同桌为一个小组,设计一份植树方案。可以用这条线段代表20米的小路。(师课前给学生准备画有20厘米线段的纸张)用你们喜欢的图案表示树,把你们设计的方案画一画。(小组活动)

  2、反馈交流。

  师:很多小组都已经完成了,先请同学们来说一说,根据你们的方案,需要种几棵树?(5棵,4棵,3棵)

  师:为什么同样的一段路,同样的要求,种的棵数却不一样呢?你们的方案分别是怎样的`?来展示一下你们的设计方案。(小组展示设计方案,交流设计思路)

  师:这三种设计方案是不是都合理呢?怎样来检验一下?(参照设计要求,检验设计的合理性。)既然都合理,比较一下,这三种方案的相同点是什么?

  生:两棵树间的间隔都一样,他们的间隔个数都相同。

  师:那它们的不同点又在哪里?

  根据学生的回答板书:

  (1)两端都栽。

  (2)只栽一端。

  (3)两端都不栽。

  师:就一个要求,同学们就能设计出这么多不同的方案,真有创造力!看来你们都有成为环境设计师的资格。

  3、合作探究,总结规律。

  师:刚才我们借助借助线段图,找到了刀数与段数的关系,回忆一下刚才的方法,你能不能用同样的方法,去探究一下棵数与段数的关系?

  小组合作探究,教师巡视指导。

  4、交流规律。

  小组汇报,其他小组补充。教师根据汇报情况板书:

  两端都栽:棵数=段数﹢1

  只栽一端:棵数=段数

  两端都不栽:棵数=段数-1

  5、验证规律。

  师:我们再用线段图验证一下我们发现的规律。

  (1)画一条18厘米长的线段,两端都种,每隔3米种一棵,几段几树?

  (2)画一条20厘米长的线段。只种一端,每隔2米种一棵,几段几树?

  (3)画一条15厘米长的线段,两端都不种,每隔5米种一棵,几段几树?

  6、强化规律。

  请前排同学到台前扮演小树,模拟种树的三种情况,记忆种树的规律。

  师:刚才同学们用勤劳的双手和智慧的大脑,不仅设计了合理的植树方案,还探究出了植树的规律,真是太棒了,你们幸福吗?拍拍手吧!

  师:其实啊,植树问题也不只是与植树有关,生活中还有很多的现象与植树问题类似,我们把这类问题统称为“植树问题”。(板书课题)

  你能举出一些类似的例子吗?(指名说一说,如,路灯,栏杆,队形……)

  三、巩固练习,运用规律。

  师:要解决植树问题,首先要确定它是三种情况中的哪一种。下面我们来运用这些规律解决一些问题。(课件逐一出示)

  1、同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要栽多少棵树苗?

  2、动物园的大象馆和猩猩馆相距60米,绿化队要在两馆间的小路两旁栽树,相邻两棵树之间的距离是3米,一共要栽几棵树?

  3、为庆祝六一,学校要在教学楼前小路的两旁插上小旗子,每4米插一面,20米内可以插多少面小旗子?

  4、提高题。园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)先判断属于哪种情况,独立解决。

  (2)小组交流。

  (3)汇报。

  师:运用自己发现的规律去解决了问题,是不是一件幸福的事?我们拍拍手吧!

  四、回顾整理,反思提升。

  师:回忆一下,在我们这节课的学习中,是什么帮助了我们去发现了那么多规律?(线段图)线段图是我们在学习中经常用到的一种工具,同学们一定要把它当成好朋友噢。这节课老师感到很快乐,我收获了幸福,你们收获了什么?

  指名说一说。

  你认为谁的表现最值得你去学习?

  板书设计:

  植树问题

  两端都栽:棵数=段数﹢1

  只栽一端:棵数=段数

  两端都不栽:棵数=段数-1

植树问题教学设计3

  教材分析:

  “植树问题”在实际生活中应用比较广泛,它通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:

  1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2.掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

  教学重难点:

  掌握“植树问题”中三种情况:两端都要种,两端都不种,只种一端的解题方法。

  教具学具:

  绳子、挂图、泡沫、小树、题卡

  教学过程:

  一.创设情境,导入新课

  1.小游戏:

  点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种情况:4个、3个、2个)(解释“间隔”的意思)

  通过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:通过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。

  2.导入新课:今天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)

  二.新课探究:

  1出示例题:(同学们,今年我们海南迎来了一件大喜事:海南国际旅游岛建设发展规划纲要获批了,为了响应海南国际旅游岛建设的号召)寰岛小学决定美化校园,要在长50米的塑胶跑道的一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在轻松愉快的生活化的课堂环境中学习数学。

  2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,

  要求:(1)计算一共需要准备多少棵树苗

  (2)思考棵数与间隔数的关系。

  点评:学生亲自动手操作,并通过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的能力,把感性认识上升为理性认识。

  3.汇报结果:

  (1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1

  (2)只种一端:50÷5=10(棵)结论:棵数=间隔数

  (3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1

  4、总结(学生汇报教师书写):

  (1)两端都种:棵数=间隔数+1

  (2)只种一端:棵数=间隔数

  (3)两端都不种:棵数=间隔数-1

  点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种情况的理解。结论的得出也就水到渠成了。

  三、课堂练习

  1、做一做:

  (1)园林工人要在全长800米的公路一侧植树,每隔4米栽一棵(两端都要栽)。一共需要多少棵树苗?

  (2)李家庄小学从校门口的门柱到教学楼的墙根,有一条长120米的.笔直的校道,在校道的一边每隔5米种一棵椰子树,一共种了多少棵椰子树?

  2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。

  (1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗(20分):学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯(20分):小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站(30分):5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头(30分):一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上(50分):在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场(50分):圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上(50分):广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆(100分):在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌(100分):在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  点评:设计形式新颖、有梯度、富有情境化和生活趣味的练习题,激发了学生的学习兴趣,充分调动了学生的解决问题的积极性,同时充分地体现了数学与生活的紧密联系,使数学回归生活,

  四、全课小结:这节课我们学习了什么内容?你还有什么疑问?(植树问题的三种情况)

  五、板书设计

  植树问题

  两端都种:棵数=间隔数+1

  只种一端:棵数=间隔数

  两端都不种:棵数=间隔数-1

  例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的

  一侧每隔5米植一棵树,一共需要准备多少棵树苗?

  两端都种:50÷5+1=11(棵)

  只种一端:50÷5=10(棵)

  两端都不种:50÷5-1=9(棵)

  (1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)

  (2)插彩旗:学校要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)

  (3)上楼梯:小明从一楼到三楼走了30级台阶,如果从一楼走到六楼,需要走几级台阶?

  (4)公交站:5路公交车行驶路线全长12千米,相邻两站的距离是2千米,一共有几个车站?

  (5)锯木头:一根木头长10米,要把它平均分成5段,每锯一次需要8分钟,锯完需要几分钟?

  (6)街道上:在一条全长20xx米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)

  (7)滑冰场:圆形滑冰场的一周全长150米,如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?

  (8)钟表上:广场上的大钟5时敲响5下,8秒钟敲完,12时敲响12下,需要多长时间?

  (9)电线杆:在公路一边每隔50米埋设一根电线杆,共埋设了10根(两端都埋),这段公路有多长?

  (10)广告牌:在马路的一侧立有广告牌,若每隔5米立一块广告牌,一共立21块,从第一块到最后一块的距离有多远?

  教学后记:

  本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

  一、动手操作、合作交流、探究规律:

  本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。

  二、练习的设计独特、新颖、有梯度:

  本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

  三、充分体现学生的主体作用及教师的主导作用:

  本节课,我通过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

植树问题教学设计4

  教材分析:

  植树问题”是人教版新课程标准实验教材五年级上册“数学广角”的内容。教材将“植树问题”分为两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等几个层次,这节课主要是教学两端都栽的植树问题,通过教学向学生渗透复杂问题从简单入手的思想。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等数学探索的过程,并启发学生透过现象发现其中的规律,建立数学模型,再利用规律回归生活,解决生活实际问题。

  学情分析:

  从学生的思维特点看,五年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  设计理念:

  新课程标准要求,“数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力”。因此在设计这节课时,我主要运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。

  一、通过观看图片为起点,以学生熟悉的手为素材,让学生感知间隔以及植树与数学的联系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。

  教学目标:

  一、知识与技能性:

  1.利用学生熟悉的生活情境,通过动手操作、小组合作的实践活动,让学生发现间隔数与植树棵数之间的关系。

  2.通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。

  3.能够借助图形,利用规律来解决简单植树的问题。

  二、过程与方法:

  1.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  2.渗透数形结合的思想,培养学生借助图形解决问题的意识。

  3.培养学生的合作意识,养成良好的交流习惯。

  三、情感态度与价值观

  通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重难点:

  一、教学重点

  1、引导学生在观察、操作和交流中探索并发现两端都栽的情况下间隔数与棵数的规律,并能运用规律解决实际问题.

  2、运用规律解决类似的实际问题的方法。

  二、教学难点

  理解间隔与棵树之间的规律(棵数=间隔数+1、间隔数=全长÷间隔长)并能运用规律解决抽象的植树问题。

  教学方法:

  1、采用手指引出间隔,让学生理解间隔,引出与间隔有关的植树问题

  2、分组探究,发现规律,建立数学模型

  3、运用规律,解决问题

  4、回归生活,实际应用

  教学准备

  PPT课件 多媒体设备

  教学过程

  一、新授

  1.照片引发的思考

  师:植树是一个非常有意义的活动,它不仅能够绿化环境,净化空气,使我们在劳动中得到锻炼,而且,在植树的过程中还蕴含着很多很多的数学问题,怎么样有兴趣探讨吗?

  在学习之前先学习一下和植树问题相关的知识 出示图片(让学了解间隔和间距)

  师:课件:在100米长的小路一边种树,每隔5米种一棵。(两端都栽)一共需要栽多少棵? (指名大声朗读)

  师:(生读完)说说吧学校植树都有哪些要求(指名回答)

  师:每隔5米种一课

  师:每隔五米指的是什么(点名回答)

  生:间隔

  师:这个词不错(板书间隔)。间隔指的是什么?

  生:两棵树之间的距离

  师:学校要求两棵树之间的距离是多少?

  生:5米

  师:还有哪些要求吗?

  生:两端都要栽。

  师:这个要求也很重要(板书两端都要栽)

  说说是什么意思?

  生:两头都要栽

  师:你能用手比划比划吗?

  生:能

  师:还有什么要求吗?

  生:在100米的小路的一边

  师:强调一边就是一行

  让学生试着独自完成提前的题卡(老师巡视找到不一样的结果20、21、22让他们写在黑板上)

  师:做完了吗

  生:做完了

  师:做完了,看黑板,同样的要求出现了三种不同的'答案,同意20的举手21的举手22的举手!那学校到底该买多少树苗呢?

  三、合作探究、寻找规律

  1、小组探究,给予充分的时间。

  那咱们就4个人一个小组探究一下这个问题,听要求,画一画,摆一摆或者模仿实际种一种!开始吧(这时教师下去指导巡视)

  师:大家往前看,大家探究出来结果了吗?

  学校到底需要买多少棵树?谁来说?(点名回答)

  生:我们小组讨论的结果是21棵。

  师:同学们对于这个小组讨论的结果21棵你们同意吗?

  生:同意

  师:大家都是正确的

  你们小组使用什么样的方法得出结论的呢?

  生:画线段

  师:愿意展示给大家看吗?

  大家注意听,看看这位同学的方法和你们的方法有什么不一样的地方?

  生:总结先画一条线段表示100米,100除以5是20个间隔

  师:是20个间隔吗?你带着同学数一数。20个间隔没错,那一定是21棵树吗?

  生:最后一棵没加上

  师:你把什么当成小树啦?

  生:线段上的小端点

  师:数一数是21个吗?

  生:是

  师:听明白了吗?有什么想问问他的吗?

  还有没有其他的方法?

  生:摆铅笔,2根1个间隔3根2个间隔4根3个间隔5根4个间隔

  师:为什么加一呀

  生:最一开始的一根或者最后一根没算

  师:也就是学校要求两端都要栽

  师:当做两端都要栽的问题时 间隔数+1=棵数

  师:把复杂的问题简单化这种思想很可贵,发现规律,其他的组也是这么考虑的吧!

  看看这一规律的发现过程出示ppt

  棵数=间隔数+1

  间隔数=全长÷间隔长

  师:请同学们很自豪的把自己总结的规律读一遍。

  一共需要多少棵树苗。(学生操作、思考、教师巡视)

  师:有答案了吗?谁愿意展示一下你的劳动成果,你是怎样想的?你能在黑板上来“改一改”吗?

  师:6棵树几个间隔7棵呢99棵呢200棵呢

  8间隔几棵树呢50个间隔呢1000个间隔呢

  师:植树问题不仅能解决植树问题还能解决生活中的实际问题比如说安路灯

  在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?(找同学朗读)能解决吗?巡视过程中找41,82两个答案

  师:同学们算完了吗?看大屏幕(展示两个答案)你们同意那个?强调两旁 乘2

  这个同学的错误正好提醒了我们做这类题的时候一定要注意两旁 两旁需乘2同意吗同学们?

  师:今年雾霾挺严重的刚刚还因为雾霾放了假所以呀

  北辰区政府为了减少尾气排放,减少污染,方便市民出行,为北辰人民新开设一条公交线路604路,从新河桥到东站后广场共有18站,相邻两站的距离大约是700米,这条线路大约是多少千米?

  能解决吗?写在题卡上 做完了同桌互相检查(老师下去辅导)

  师:谁说说你是怎么样算的?

  生:18-1求出间隔数

  700×17=11900(米)

  11900米=11.9千米

  师:都对了吗?

  生:做对了

  师:你们家里都有钟表吗?听过钟声吗?你听当当这是几时?

  生:2时

  师:当当当,这是几时?几个间隔?在钟声里面也有数学问题一起看看谁能大声朗读?(出示ppt)广场上的大钟5时敲响5下,8秒敲完。 12时敲12下,需要多长时间敲完?

  师:能试着解决吗》做在题卡上,有困难了放在我们小组内解决,看看能不能解决。(巡视)同学们有结果了吗?哪个小组愿意汇报?

  生:5-1=4 (个) 8÷4=2 (秒)12-1=11(个)11×2=22(秒)

  师:同学们说得真好

  总结:这节课大家都有什么收获?

  两端都要植:棵数=间隔数+1

  间隔数=棵数-1

  板书设计:

  植 树 问 题

  两端都栽 棵树 间隔数

植树问题教学设计5

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?预设:5根

  教师:那手指与手指间的空隙叫什么呢?预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?预设:4根间隔

  教师:4根手指之间有几个间隔呢?预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?教师:告诉我们哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的`单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

  教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?(请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?六、布置作业

植树问题教学设计6

  教学目标:

  1、通过猜测、试验、、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

  2、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:

  发现并理解两端都栽的植树问题中间隔数与棵数的规律。

  教学难点:

  运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:

  课件、直尺、学习纸。

  教学过程:

  (一)创设情境,引入新课

  教师:你们知道3月12日是什么节日吗?关于植树你知道些什么?(引导学生说诸如植树时两棵数之间有一定的距离,这些距离一般相等……这些与本课学习相关的信息。)

  教师:其实在植树中还隐藏着很多数学问题呢!今天我们这节课就来研究植树中的数学问题。(板书课题:植树问题)

  (二)充分经历,探究新知

  1、大胆猜测,引发冲突。

  (1)读一读,说一说。

  课件出示例1,引导学生获取相关数学信息。让学生读题,然后指名说一说:从题中你了解到了哪些信息?重点帮助学生弄清楚下列数学信息的含义:

  “每隔5米栽一棵”是什么意思?

  使学生明确“每隔5米栽一棵”就是指每两棵树之间的距离都是5米,每两棵树之间的距离也叫间隔长度,也可以说成“两棵树之间的间隔是5米”。

  “两端要栽”是什么意思?“一边”是什么意思?

  可以先让学生说一说,然后教师拿出实物演示。例如:让学生指出尺子的两端指的是哪里?一边指的是什么?

  (2)猜一猜,想一想。

  让学生根据例题中的信息,猜一猜一共要栽多少棵树苗,教师对学生的猜测不发表评论,引导学生积极发表自己的看法。

  教师:到底要栽多少棵呢?对不对呢?你打算怎样检验自己的猜想?

  引导学生用画线段图的方法进行验证。

  (设计意图:帮助学生厘清题意,让学生通过猜想答案,引起认知冲突,激发学生继续探究的欲望。)

  2、借助操作,探究规律。

  (1)初步体验,化繁为简。

  教师:我们用一条线段表示100米的小路,每隔5米栽一棵,大家可以用自己喜欢的图案表示树,每隔5米种一棵,每隔5米种一棵,照这样一棵一棵种下去……是不是很麻烦?

  教师:为什么觉得很麻烦?

  学生:因为100米里面有20个5米,太多了。

  教师:也就是说100米在这道题中显得数据有点大,因此画图时会比较麻烦。像这样比较复杂的问题,我们可以先从简单一些的情况入手进行研究。比如,我们可以先选取100米中的一小段研究。

  (2)教师演示,直观感知。

  教师演示课件,边演示边说明。

  教师:我们选取100米中的20米来研究,用一条线段表示20米,每隔5米栽一棵,也就是说树的间隔是5米。(教师板书)

  教师;大家看一看,我们把这段路平均分成了几段?也就是有几个间隔?栽了几棵树?

  引导学生说出20米长的一条路,间隔长度是5米,有4个这样的间隔,可以栽5棵树。

  (设计意图:让学生体会复杂问题可以从简单问题入手的解题策略,并通过课件的演示,向学生示范线段图的画法,为学生下面的自主探究作好准备。)

  (3)动手操作,初步体验。

  让学生自由选择100米中的一小段,动手画一画,看一看这一小段上,两端都要栽,一共要栽几棵树。

  教师选择有代表性的作品进行展示,为什么这样画?重点让学生说一说自己的想法:你是怎样画的?为什么这样画?一共要栽多少棵树?

  教师:虽然这些同学选取的长度不一样,一共要栽的棵数也不一样,但他们所画的线段图特别是他们的分析和思考方法有相同的地方,你能找到吗?

  引导学生观察,在这些不同的画法中,有一个共同的地方:棵树比间隔数多1。

  (4)合理推测,感知规律。

  教师:不用画线段图,如果这条路长30米、35米……又应栽几棵树呢?请同学们拿出学习纸,填写表格。

  学生填写表格,教师巡视,对个别学生进行指导和说明。

  学生填写完表格后,小组交流汇报结果。

  (5)归纳概括,理解规律。

  教师:请大家认真观察表格,你发现在一条线段上栽树(两端要栽),间隔数和棵树有什么关系?将自己的发现在小组内说一说。

  学生汇报自己的发现。

  引导学生发现两端都栽树,植树的棵数比间隔数多1,也可以说间隔数比棵数少1。

  教师:为什么两端都栽树,棵数比间隔数多1?

  学生回答后,教师借助课件演示帮助学生进一步直观理解。

  (设计意图:学生动手操作,合作交流。让学生在不断的操作和交流中,经历了观察、发现和感受的全过程,学到了解决问题的方法。)

  (6)即时巩固,强化规律。

  教师:同学们都明白了两端都栽的情况下树的棵数与间隔数之间的关系,老师出几道题考考大家:7个间隔种几棵树?20个间隔种几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?

  (设计意图:通过这个小练习,使学生进一步掌握在两端都栽的情况下,树的.棵数和间隔数之间的关系。)

  3、运用规律,验证例1。

  教师:回到例1,在100米的小路一边植树,每隔5米栽一棵(两端要栽),到底一共要栽多少棵树?哪些同学刚才猜对了?

  教师(点几个猜错的同学):现在你知道自己猜错的原因是什么了吗?给大家说说看,你要提醒大家注意什么?

  学生尝试列式解决问题,教师巡视,有针对性地指导。

  全班汇报交流,主要让学生弄清楚:100÷5=20是什么意思?为什么还要用20+1=21(棵)?

  (设计意图:让学生经历猜测——试验——验证的探究过程,同时让学生明确每步算式的意义,以便于学生更好地理解植树问题的数学模型。)

  (三)回归生活,实际应用

  1、“做一做”第1题。

  教师:这道题里没有植树呀,能用我们今天学的方法解决吗?

  使学生明确应用植树问题的规律,可以解决生活中很多类似问题。在本题中把一盏路灯看成一棵树,也能用植树问题的规律来解决。

  教师:其实植树问题,并不只是与植树相关,生活中有很多问题和植树问题相似,比如安装路灯、电线杆、设立车站等。

  2、练习二十四1、2、3题。

  让学生进一步感受到植树问题在生活中的广泛应用。

  3、练习二十四第4题。

  教师:这一题与例题有什么不同?

  老师引导学生找出此题与例题的区别。例题是知道全长与间隔长度求棵数,而本题是知道间隔长度与棵数求路的全长。

  教师:你是怎样计算的?为什么用36减1?

  (设计意图:运用植树问题的数学模型解决生活中的类似问题,把植树问题进行拓展应用,使学生能举一反三,触类旁通,并让学生体会到数学与实际生活的紧密联系。)

  (四)课堂小结,畅谈收获。

  反思:

  通过本节课的学习,让学生了解两端都栽的情况下,棵数和间隔数的关系,这部分内容比较抽象,为了将难点化简,讲授新知前,我利用手指游戏导入,孩子很感兴趣,而且初步感受到了棵数、间隔数的关系。再从生活中抽取简单的植树现象,加以提炼,建立数学模型,再将这一数学模型应用于生活实际。

  一、创设愉悦氛围,让游戏走入情境。

  从学生感兴趣的猜谜和游戏入手,创设轻松愉悦的氛围,让学生初步感知棵数、间隔数的关系,为进一步的探究奠定了基础。这种学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。

  二、注重自主探索,让体验走入方法。

  体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,为学生提供了充分思考的时间与空间,让学生从简单的问题入手,借助直观的图示,探索植树问题两端要栽的规律。借助图形,建立知识表象,注重对数形结合意识的渗透,使学生得到启迪,悟到方法,从而建立起学习的信心,进一步解决较复杂的问题,渗透一种化归思想。

  三、倡导知识运用,让建模走入生活。

  “数学来源于生活,而又应该为生活服务。”让学生认识到只要善于观察,就会发现生活中的许多事例跟植树问题相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。

  但这节课也有我颇感不足的地方,我觉得自己对学生的学习起点没有充分把握,没有注重学生逆向思维的培养,也没能很好地关注到全体学生,在以后的教学中,我还要注意把握好教材的度,适当进行取舍,更合理的安排好教学时间。

植树问题教学设计7

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。

  教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?

  预设:5根

  教师:那手指与手指间的空隙叫什么呢?

  预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?

  预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?

  预设:4根间隔

  教师:4根手指之间有几个间隔呢?

  预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?

  预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。

  引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?

  教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?

  预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)

  预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)

  预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的'两个公式)

  教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

  (请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?

  教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?

  思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?

  六、布置作业

植树问题教学设计8

  教学目标:

  1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

  2.使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  一、谈话引入,明确课题

  母亲节刚过,我们马上又要迎来一个快乐的节日──“六·一儿童节”,这也是全世界少年儿童共同的节日。其实,一年中有意义的日子还有很多,你还知道哪些?能说几个吗?(生说)

  大家知道3月12日是什么日子吗?(植树节)你参加过植树活动吗?植树不仅能美化环境,净化空气,而且植树中还有很多数学问题。今天这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  ①课件出示图片。

  介绍:这是我县新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?

  出示题目:这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

  ②理解题意。

  a.指名读题,从题中你了解到了哪些信息?

  b.理解“两端”是什么意思?

  指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

  说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

  ③算一算,一共需要多少棵树苗?

  ④反馈答案。

  方法一:1000÷5=200(棵)

  方法二:1000÷5=200(棵)200 +2=202(棵)

  方法三:1000÷5=200(棵)200 +1=201(棵)

  师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?

  2.简单验证,发现规律。

  ①画图实际种一种。

  课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去……

  师:大家看,已经种了多少米?(45米)这么长时间才种了45米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

  师:老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?

  ②画一画,简单验证,发现规律。

  a.先种15米,还是每隔5米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3段4棵)

  b.跟上面一样,再种25米看一看,这次你又分了几段,种了几棵?(板书:5段6棵)

  c.任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

  (板书:2段3棵;7段8棵;10段11棵。)

  d.你发现了什么?

  小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

  (板书:两端要种:棵树=段数+1)

  ③应用规律,解决问题。

  a.课件出示:前面例题

  问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

  1000÷5=200这里的200指什么?

  200 +1=201为什么还要+1?

  师:这个“秘方”好不好?

  通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?

  b.解决实际问题

  运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)

  问:这道题是不是应用植树问题的规律解决的?

  师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。

  小结:刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,“两端要种”求棵树用段数+1;如果“两端不种”棵树和段数又会有怎样的关系呢?

  三、合作探究,“两端不种”的规律

  1.猜测“两端不种”的规律。

  猜测结果是:两端不种:棵树=段数-1

  师:到底同学们的猜测是不是正确呢?我们还是用前面学习的方法,举简单的例子画一画,种一种。

  要求:每人先独立画一段路种种看;然后4人一组进行交流。你们组发现了什么规律?

  2.独立探究,合作交流。

  3.展示小组研究成果,发现规律,验证前面的猜测。

  小结:同学们太了不起了,通过举简单的例子,自己又发现了“两端不种”的规律:棵树=段数-1。如果“两端不种”求棵树,你会做了吗?

  4.做一做。

  ①在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(学生独立完成)

  ②师:同学们注意看,这道题发生了什么变化?

  课件闪烁:将“一侧”改为“两侧”

  问:“两侧种树”是什么意思?实际要种几行树?会做吗?赶紧做一做。

  小结:今天我们研究了植树问题的两种情况。发现了两端要种:棵树=段数+1;两端不种:棵树=段数—1。以后同学们在做题的时候,一定要注意分清是“两端要种”还是“两端不种”。

  四、回归生活,实际应用

  1.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

  8÷2=4(段)

  4—1=3(次)

  问:为什么要—1?这相当于今天学习的植树问题中的那种情况?

  2.我们身边类似的数学问题。

  ①看,这一列共有几个同学?(4个)如果每相邻两个同学的距离是1米,从第1个同学到最后一个同学的距离是多少米?如果这一列共有10个同学呢?100个同学呢?

  ②这一列还是4个同学,如果每相邻两个同学之间的距离是2米,从第一个同学到最后一个同学的距离是多少米呢?

  3.在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

  五、全课总结

  通过今天的'学习,你有哪些收获?

  师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

  “植树问题”说课

  “植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想。为此,本课制定了三个教学目标:

  1.通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题的规律。

  2.学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  本课教学分四大环节:

  一、谈话导入,明确课题

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  通过创设在公路中间绿化带中植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了三种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)

  2.简单验证,发现规律。

  在举简单例子画一画这个环节,安排了两个小层次:

  ①按老师要求画。

  ②学生任意画。

  通过按老师要求画,学生对棵树和段数的关系已有了一定的感性认识。然后让学生再任意画一画,种一种,更丰富了学生的感性材料,为学生顺利发现并总结规律打下了基础。

  3.应用规律,解决问题。

  ①应用规律,验证前面例题哪个答案是正确的。

  ②应用规律,解决插多少面小旗的问题。

  这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。

  三、合作探究“两端不种”的规律

  1.猜测“两端不种”的规律。

  猜测是一种培养学生推理能力的好方法。学生已经发现了“两端要种”的规律,这时候老师提出如果两端不种,棵数和段数又会有怎样的规律呢?有了前面的学习基础,学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。

  2.独立操作,探究规律。

  有了前面的学习基础,放手让学生先独立探究再合作交流,通过简单的例子验证前面的猜测,发现两端不种的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。

  四、回归生活,实际应用

  设计了三道题:锯木头、算第一个同学和最后一个同学的距离以及对算距离问题的进一步巩固。通过解决生活中的问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。

植树问题教学设计9

  【教学目标】

  知识目标:

  1.利用学生熟悉的生活素材、通过动手操作等实践活动,让学生感悟间隔数与棵数之间的关系。

  2.让学生自主探索、讨论、交流,使学生发现并理解植树问题(两端要栽)的解题规律,并利用规律解决一些实际问题。

  能力目标:

  1.让学生经历分析、思考、解决问题的整个探究过程,并从中学习一些解决问题的方法和策略。

  2.通过探索间隔数与植树棵数之间的规律,初步体会化复杂为简单和一一对应的数学方法。

  情感目标:培养学生的分析意识,养成良好的交流习惯,感悟日常生活中处处有数学,体验学习的成功喜悦。

  【教学重点】:引导学生发现棵数与间隔数的关系。

  【教学难点】:理解间隔与棵数之间的规律并运用规律解决问题。

  【教学准备】:课件、学生用尺子、表格等。

  【教学过程】:

  一、谜语导入,引入新课

  师:同学们,你们喜欢猜谜语吗?

  生:喜欢。

  师:今天啊,老师带来一个谜语想和大家一起猜一猜,请看。两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。它是什么呢?你说说看?

  生:他是手。

  师:哦,他就是我们的手。我们的手作用可真大,又会写又会画还会算,而且我们的手上还有许多的数学奥秘,仔细看老师的手,你看到了数字几呢?

  生:5.

  师:哦,你们都看到了数字五,那你还能看到数字几呢?

  生:我看到了数字4、3、2、1。

  师:哦,你说的数字4、3、2、1表示的是什么啊?能告诉我们吗?

  生:手指的.个数。

  师:哦,手指的个数。那我们说的五也是手指的个数,对吧。诶,除了手指的个数外你还能看到什么呢?

  生:还能看到手指之间的间隔。

  师:哦,手指之间还有一个个的间隔。同学们,在老师的手上五个手指之间到底有几个间隔呢?

  生:4个。

  师:数一数。1、2、3、4,恩,还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?

  生依次回答。

  师:恩,一个间隔。同学们,你们发现了手指数和间隔数之间的关系了吗?手指数比间隔数怎么样啊?

  生:手指数比间隔数多一。

  师:说得真完整。谁还说?

  生2:手指数比间隔数多一。

  师:哦,那间隔数比手指数呢?

  生3:间隔数比手指数少一。

  师:哦,谁还说?

  生4:间隔数比手指数少一。

  师:同学们,你能用一个算式来表示手指数和间隔数之间的关系吗?手指数等于什么呢?

  生1:手指数等于间隔数加一。

  师:哦,谁还说?

  生2:手指数等于间隔数加一。

  师:恩,还谁会说?好,你也来试试。

  生3:手指数等于间隔数加一。

  师:很好,那么间隔数等于什么呢?

  生1:间隔数等于手指数减一。

  师:恩。

  生2:间隔数等于手指说减一。

  师:恩,真聪明。好了,同学们,我们每个人啊,都有两件宝贝,一个呢是我们的双手,一个是我们的大脑。我们利用我们的大脑发现了这么多手上的奥秘,看来我们的数学真是无处不在啊。

  二、探究规律实现目标

  1、多媒体出示学校操场

  师:这里是哪里?

  生:操场!

  师:看来同学们对我们的学校真是非常熟悉,一下就认出了这就是我们的操场。为了美化我们的学校,校长打算在100米的操场小路上植树,可不是随便种的哦,校长可是有要求的。今天我们就要利用我们的双手和大脑一起来研究植树中的数学问题。-------植树问题。(板书课题)

  出示例题1:在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共要栽多少棵树?

  师:读一读,在题中你读到哪些信息?谁来说一说?

  生:……………………

  师:一边表示什么?全长100米表示什么?每隔5米栽一棵表示什么意思?

  师:什么是两端都要栽?

  生:……………………..

  (1)师小结:用图演示说明:一边是小路的一侧,指左边或者右边,全长100米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

  (2)算一算,一共要栽多少棵树?

  (3)反馈答案:

  方法1:100÷25=20(棵)

  方法2:100÷25=20xx+2=22(棵)

  方法3:100÷25=20xx+1=21(棵)

  (4)师提出疑问:现在出现了三种答案,到底哪种答案是正确的呢?用什么方法来验证?

  三、自主探究,发现规律

  1.师用课件出示下表说:同学们想的办法真多,我们可以选择画线段图来验证。但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究、验证。如本题中假设路长只有5米、10米、15米、20米…每5米栽一棵(两端要栽),可栽几棵呢?下面我们一起来画线段图来分析、研究一下。(板书:复杂——简单)

  总长

  (米)

  间距

  (米)

  线段图例

  (图上厘米代表实际米的距离)

  间隔数

  (段)

  棵数

  (棵)

  5

  5

  10

  5

  15

  5

  20

  5

  ..

  ..

  ..

  ..

  2.先明确表意,再让学生探索完成上表中的内容。

  1.全班交流汇报表中内容。

  2.小组讨论:总长、间距和间隔数之间有什么关系?间隔数和棵数之间呢?

  3.把上表一分为二,让学生交流展示讨论结果。

  (1)出示下表交流汇报总长、间距和间隔数之间的关系。并借助数据,帮助学生理解这一关系的意思。(板书:总长÷间距=间隔数)

  总长

  (米)

  间距

  (米)

  间隔数

  (段)

  5

  5

  10

  5

  15

  5

  20

  5

  ..

  ..

  ..

  (2)出示下表交流汇报间隔数和棵数之间的关系。并借助表中数据,帮助学生理解这一关系的意思,但关键让学生理解为什么棵数比间隔数多1,渗透对应思想。(板书:间隔数+1=棵数)

  线段图例

  (图上厘米代表实际米的距离)

  间隔数

  (段)

  棵数

  (棵)

  1

  2

  2

  3

  3

  4

  4

  5

  ..

  ..

  ..

  4.教师小结

  (1)同学们非常能干,通过猜测、验证、讨论发现了植树问题中一个非常重要的规律,那就是如果再一条路上植树,两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1,而总长除以间距等于间隔数。对这个规律有没有不同意见?有没有不同说法?

  (2)填一填,反馈规律。

  ()×间隔数=总长棵数–1=()

  总长÷()=间距()-()=1

  四、活用规律,解决问题

  (一)回归疑问,初用规律

  以表格的形式摘要出例题1的重要信息后,师说:现在我们用刚得到的规律验证一下课前同学们做例题1的三种解法,哪种正确呢?说说你是怎样想的?

  总长

  (米)

  间距

  (米)

  间隔数

  (段)

  棵数

  (棵)

  100

  5

  (二)基础练习,再用规律

  师:同学们真会动脑筋!通过简单的例子,发现了规律,应用这个规律解决了复杂的问题。以后遇到“两端要种,求棵数”的植树问题,知道该怎么做了吗?请试一试:

  1、把下表补充完整

  总长

  (米)

  间距

  (米)

  间隔数

  (段)

  棵数

  (棵)

  100

  5

  20

  21

  200

  5

  200

  10

  1000

  8

  (三)深化练习,拓展规律

  师:同学们真能干!其实我们的生活中还存在着许多类似植树问题的现象。

  1、说一说,生活中的哪些情况类似植树问题呢?

  2、课件依次演示:

  不容易看见却能“想象”的树

  看不见却能“听得见”的树

  师说明:在数学上,我们把这类问题也归为“植树问题”。

  3、巧用规律,解决生活中类似问题

  (1)请你选一选:

  这排礼炮共有29个间隔,合()门礼炮。

  ①28门②29门③30门

  (2)下面哪个算式是正确的?

  一列共有25张凳子,有()个间隔?

  ①25+1=26个②25个③25-1=24个

  (3)公交车从东站到西站全长18千米,相邻两站的距离是2千米。一共有多少个站点?

  (4)一盒9响鞭炮,当听到第一个爆炸声开始计时,到第二声响起时,经过2秒钟。当听到最后一声响起时共经过几秒钟?

  五、拓展

  教师总结延伸:同学们这节课中运用化复杂为简单的数学思想方法发现了两端都栽的植树问题中的规律,并能利用规律解决生活中类似的实际问题。其实,植树问题还有一端栽一端不栽、两端都不栽、封闭图形,如正方形、圆形花坛等情况,这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。继续努力吧!

  六、全课总结,理顺知识

  这节课你有什么收获?

植树问题教学设计10

  一、教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级下册“数学广角” 第117—118页。

  二、教材目标:

  1.通过生活中的事例,知道 “植树问题”的三种不同的情况,理解与掌握间隔数与棵数之间的关系和变化规律。

  2.通过具体问题的解决过程,经历观察、比较、发现、概况等数学活动,培 养学生的研究意识和探究能力,感悟化繁为简、数形结合等数学思想方法。

  3.能运用规律或研究方法解决相关的实际问题,感受数学在生活中的广泛应 用,培养学生的应用意识和解决实际问题的能力。

  三、教学重点:引导学生经历规律的获得过程、建立数学模型,并用所学的方法解决一些简单的实际问题。

  四、教学难点:理解间隔数 与棵数之间的关系;解决与植树问题具有相同数学模型的实际问题。

  五、教学准备:学习单、多媒体课件、小树和小路模型。

  六、 教学过程:

  (一) 问题导入:

  出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。让学生猜一猜:这会是什么呢?

  教师组织学生认识手中的间隔,并认识它们存在的规律“间隔数+1”

  (二)探究新知:

  1.队列问题:

  出示学生排着整齐的队伍去植树的图片,引导学生发现学生队伍中存在间隔,通过学生站一站,数一数等形式总结人数和间隔数的关系,再次对应“间隔数+1”

  并出示课题。

  2.植树问题:

  (1)体会“化繁为简”思想:

  问题导入:同学们到达目的.地,又遇到难题了:在全长1260米的小路的一边植树,每隔5米植一棵,按怎样的方案植,又需要多少棵树呢?

  突出矛盾:数字太大,不易思考,引导学生转换较小的数。

  明确思想:当遇到复杂的问题,可以转化成简单的问题,这就是“化繁为简”的数学思想。(板书:化繁为简)

  (2)设计三种植树方案:

  引导学生用学具摆一摆或用线段画一画的形式,同桌两人合作设计植树方案。

  ①学生活动,教师巡视。

  ②汇报、展示:

  ③小结:组织学生对不同方案进行命名,突出其主要特征。

  教师板书:两端都种、只种一端、两端不种

  (3)探究规律:

  ①求间隔数:

  教师引导学生发现植树过程中的间隔,总结植树棵数和间隔数的关系,再次对应“间隔数+1” 。

  在没有植树的棵数时,探究间隔数与全长、间隔的关系。

  组织学生独立思考,借助学具、线段图等形式探究规律

  a:学生思考并摆学具或画线段或列算式。

  b:汇报:

  ②探究间隔数与棵数的关系:

  开放间隔的长度:(出示课件)在20米的小路的一边植树,每隔 米植一棵,一个需要棵树?

  小组合作完成探究,活动要求:

  1)自己选择适合的间隔长度,四人小组合作完成记录表。

  2)小组选择一种植树方式进行探究。

  3)可以借助摆学具、画线段、数手指或列算式的方式。

  a:学生小组活动,教师巡视。

  b:学生汇报发现规律,教师板书。

  c:升华:

  三种情况结果不同,但是在求解过程也存在着相同,都是先计算20÷5,这就意味着解决植树问题的关键是明确间隔数。

  d:应用:

  老师检查同学们的植树情况,他从第1棵树走到第20棵树时,一共走了多少米?

  (三)巩固提升:

  1.选一选:

  下面每一题相当植树问题的哪一种情况?

  (1)音乐中的“五线谱”( )

  (2)衣服上的纽扣( )

  (3)成语“一刀两断”()

  (4)自鸣钟九点报时的钟声( )

  A.两端都种 ; B.只种一端; C.两端不种。

  2. 广场上的大钟5时敲响5下,4秒敲完。12时敲12下,需要 秒。 3. 小法官:

  (1)学校的教学楼每层有24个台阶,老师从1楼开始一共走了72个台阶,判断:现在老师走到了3楼。( )

  (2)一根10米长的木头,把它平均分成5段,锯一次需2分钟。判断:锯完一共需要10分钟。( )

  4.学校一条大路的一边共插了20面彩旗。

  (1)如果使两面彩旗中间放一盆花,一共要放多少盆花?

  (2)如果要使两盆花之间有一面彩旗,一共要放多少盆花?

  (四)课堂总结:

  师:今天我们学习了什么?你有什么收获?

  生活中还有哪些类似植树问题的现象呢?无论哪些问题,我们都能用今天的方法和策略进行解决,这就是数学的奥秘。

  教学反思

  通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。本节课着重研究直线上植树的情况。

植树问题教学设计11

  教学内容:

  《植树问题》

  教学来源:

  人教版小学数学教材第九册第七单元《植树问题》

  教学对象:

  五年级学生

  备课人:

  张金玲

  基于标准:

  数学广角的教学目标可概括为以下几点:

  1、 感悟重要的数学思想方法;

  2、 运用数学的思维方式进行思考,增强分析和解决问题的能力;

  3、 在参与观察、猜测、试验、推理等数学活动中发展合情推理,感悟演绎推理思想,学会独立思考。

  教材分析:

  《植树问题》是人教版义务教育课程标准实验教科书五数上册第七单元“数学广角”中的内容。“数学广角”是人教版中的一个亮点,它系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。这一单元内容就是植树问题,教材将植树问题分为几个层次,有两端栽、两端不栽、一端栽一端不栽以及环形情况、方阵问题等。本节课例1是两端都栽树的情况。

  学情分析:

  学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  学习目标:

  1.利用学生熟悉的生活素材、通过画线段图、填表格、讨论交流等活动,能化繁为简并说出两端都栽的'情况下间隔数与棵数之间的关系。

  2.能发现并理解植树问题(两端要栽)的一般解题规律,并能利用规律解决相关的实际问题。

  评价任务:

  任务一:通过猜谜活动,以及画线段图、做表格等活动,完成目标一。

  任务二:通过课堂例题的理解分析,找到两端都栽的植树问题的一般解题规律,达成目标二前半部分。另外利用习题的解决,达成目标二的后半部分。

  【学习重点】:发现棵数与间隔数的关系。

  【学习难点】:理解两端都栽的植树问题的一般解题规律并能运用规律解决问题。

  【教学准备】:课件、小组学习单

  【教学过程】:

  一、导入新课

  1、猜谜语,直观认识间隔

  新课前老师给大家带来一个谜语,请看,“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。打一人体的组成部分。”它是什么呢?谁知道?(手)

  同意的举手?你们真会联想,它就是我们的手。我们的手作用可真大,能写会算还会画,而且我们的手上还有许多的数学奥秘,仔细看自己的手,你能看到数字吗?(5)

  哦,怎么看出5了?(表示手指的个数)谁还看到了数字5?真不错,除了用数字可以表示手指的个数,咱们的手上还有没有数字?(还能看到手指之间的间隔,两个手指之间的缝隙,教师说明,缝隙就称为间隔。)。

  手指之间还有一个个的间隔。同学们,咱们手上五个手指之间到底有几个间隔呢?(4个)

  我们一起来数一数。还真有4个间隔。那四个手指之间有几个间隔?三个手指之间呢?两个手指之间呢?(生依次回答。)

  你发现什么了吗?(生说)

  的确,手指数和间隔数之间是有着一定的规律的,它们之间的这种规律最适合解决今天我们要研究的这类问题,这类问题的名字叫做植树问题。板书:植树问题。

  二、探究规律 实现目标

  1、例题探究

  说起植树问题我们就先从植树谈起吧。请看例题。

  出示例题1:在全长1000米的小路一边植树,每隔5米栽一棵(两端都栽)。一共要栽多少棵树?

  A、从题中你能知道哪些信息?谁来说一说?生说,师画。

  它们都表示什么,大家知道吗?生说:一边表示只在小路的一侧种树。全长1000米表示第一棵树和最后一棵树之间的距离是1000米。每隔5米栽一棵表示棵与棵之间的距离是5米……

  师小结:

  一边是小路的一侧,指左边或者右边,全长1000米是指小路的总长。每隔五米栽一棵是每两棵树之间的距离,简称间距。两端要栽指起点与终点处都要栽。

  B、算一算,一共要栽多少棵树?反馈答案:

  方法1:1000÷5=200(棵)

  方法2:1000÷5=200 200+2=22(棵)

  方法3:1000÷5=200 200+1=21(棵)

  疑问:现在出现了三种答案,到底哪种答案是正确的呢?下面我们一起来验证一下,你想用什么方法验证?(生说:画线段图的方法)

  三、自主探究,发现规律

  1、化繁为简探规律

  是个好办法!我们可以选择画线段图来验证。每隔5米栽一棵就画一段,再过5米再画一段,这样我们需要画多少段呢?好画吗?为什么呀?(数据太大了)。那怎么办呢?(选择简单的数据进行研究,得出规律再解决这道题)

  是呀,在遇到比较复杂的问题时,我们可以先用比较简单的例子来研究。你准备选用哪个数来研究?(生说)下面请大家自己选择简单的数据在练习本上试着进行验证,并把你试的结果汇报给组长填在表格中,之后观察表格中的数据,你发现了什么?把你的发现在小组内说一说。

植树问题教学设计12

  教学分析:

  “植树问题”是人教版五年级上册数学广角中的一个教学内容,解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方阵,等等,它们中都隐藏着总数和间隔数之间的关系问题,我们就把这类问题统称为植树问题。在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线,比如正方形、长方形或圆形等等。即使是关于一条线段的植树问题,也可能有不同的情形,例如,两端都要栽,只在一端栽另一端不栽,或是两端都不栽。?

  例1是探讨关于一条线段的植树问题并且两端都要栽的情况,根据教材的意图,要让学生经历猜想、试验、推理等数学探索的过程,从简单的情况入手解决复杂的问题,让学生选用自己喜欢的方法来探究栽树的棵树和间隔数之间的关系,并启发学生透过现象发现规律,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用。

  学生分析:

  由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此为了让学生能更好地理解本单元的教学内容,在教学过程中点对教材进行适当的整合,并充分利用学生原有的知识和生活经验,来组织学生开展各个环节的教学活动。

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:

  理解“间距数1=棵数,棵数-1=间距数

  教学准备:

  课件10厘米15厘米20厘米的纸条三根,小棒20根。

  教学过程:

  一、设计情境,引入新课。

  1、教学“间隔”的`含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  (课件出示)师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、理解间隔数,引入课题。

  树木不仅美化环境,还能净化空气。在一条直线上植树,每两棵树之间相等的段数叫间隔数(课件演示),每个间隔的长叫间距,研究间隔数和棵数之间关系的问题,我们统称为植树问题,这节课我们来研究植树问题。(板书课题)

  二、自主探究,找出规律。

  1、出示例题,引出问题。

  师:(课件出示例题。)

  师:谁能读一读?这道题告诉我们什么数学信息?求什么问题?你认为这道题中什么词语最关键?

  (课件解释关键词语,加深学生理解)

  师:你认为要求一共植树多少棵,关键是知道什么?(间隔数)那么间隔数和棵数之间是什么关系?下面我们就来研究。

  2、动手操作,发现规律。

  (1)师:长100米的小路,数字有点大,当我们遇到复杂问题的时候,可以换成一个简单的例子来进行,请同学们看要求。(课件出示要求)

  生活动,并思考:

  1、每条小路上的间隔数是多少?

  2、棵数是多少?

  3、间隔数和棵数之间是什么关系?

  小组同学互相交流自己的发现。

  师指导。

  (2)生汇报活动结果及自己的发现(实物投影展示)

  生初步得出结论:棵树比间隔数多1。

  3、师生小结,得到规律。

  师:老师把同学们的活动过程展示出来,并用线段图来表示我们的活动结果,请同学们看。

  从这个表格中,我们更可以容易看出,间隔数和棵数之间是什么关系?生回答师板书:

  间隔数=棵数-1棵数=间隔数1。

  4、回顾例题,解决问题。

  师:现在我们就用学到的知识来解决例1的问题。生独立解决,共同评价。

  三、巩固新知(课件出示):

  1、填一填。

  让生独立看要求,说说题目中有哪些数学信息,如何解决。

  2、园林工人沿着公路一侧植树,每隔6米栽一棵小树,一共栽了21棵。从第一棵到最后一棵的距离有多远?

  3、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (1)生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

  (4)学生独立解答并汇报:

  4、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?

  5、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间敲完?

  四、师生共总结。

  这节课我们学到了什么知识,你有什么收获?

植树问题教学设计13

  教学目标:

  1、通过探究发现一条线段上两端都种、只种一端、两端不种三种情况植树问题的规律。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  3、感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题。

  教学重、难点:

  发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。

  教学过程:

 一、创设情境——培养意识

  1、师:同学们好!一起来看两组画面。

  (给学生播放荒漠化严重的和绿化优美的两组图片。)

  师:看了这两组画面,你更喜欢哪一种呢?

  师:怎样才能拥有这样美丽的环境呢?

  生:植树。

  师:植树造林,保护环境,让我们拥有一个充满鸟语花香的绿色花园是我们每个人都应尽的义务!

  师:说到植树,大家知道吗?在我们数学王国里,植树可是有一定的学问的,这节课我们就来探讨“植树问题”。——板题

  2、出示教学目标

  3、师:见过路边种树吗?一般情况下,每两棵树间距离怎样呢?(相等)一般情况下路边植树每两棵树之间的距离都是相等的,我们也可以叫做等距离植树。

  师:在路的一边等距离地植树会有几种情况呢?大家想不想亲手种种看?

  二、动手种树——探讨规律

  1、动手“种”树

  师:大家先看老师为大家准备的材料……(师介绍)

  出示操作要求:在路的一边,等距离植树,种完后小组里交流看看有几种情况?

  学生动手植树,师巡视。

  2、交流方案

  小组上台展示自己组的种树方案。

  两端都种

  两端不种

  只种一端

  3、仔细观察,每棵树之间都有间隔,那么植树的棵数跟间隔数之间有什么联系?

  生仔细观察,得出猜想:两端都种棵数=间隔数+1

  两端不种棵数=间隔数-1

  只种一端棵数=间隔数

  三、验证规律

  1、师:通过仔细观察,我们得出了自己的猜想。但是,每一种猜想在没有验证之前,也只能是一种猜想,我们只有通过验证,才能让猜想成为科学,对于我们刚才总结出的规律也必须通过验证才能得出正确结论。下面,让我们一起动手来验证我们的猜想。

  2、完成验证表格。

  师出示:这是一张验证表格,就请大家在小组内共同合作,一起探究,并展示你们组总结出的规律。(出示验证事项)

  3、小组合作探究。

  4、展示。

  分三种情况汇报。

  5、梳理规律

  师:同学们,在一条路的一边植树的三种规律我们都找出来了,我们一起来研究一下,它们之间有没有什么关系?

  相同点:都与间隔数有关

  不同点:两端都种要用间隔数+1;只种一端就等于间隔数;两端不种就要用间隔数-1

  师:这三种情况是不同的,我们在解决问题时,要注意具体情况具体分析。

  四、解决问题

  师:知道在路的一边植树有三种情况,对于下面的信息,你会提出什么样的数学问题呢?

  1、处理信息

  问题情境:这是实验小学刚建好的一条校道(配图),看到这光秃秃的校道你会想到什么呢?

  生:种树!

  出示信息:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵

  师:根据这些信息你会提什么数学问题呢?

  生:一共可以种多少棵树?

  得不完整例题:

  实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,一共需要多少棵树苗?

  师:看着这道题,谁有话想说吗?

  生1:两端都种

  得完整例题:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?

  师:受他的启发,还能提出什么样的问题?

  生2:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?

  生3:实验小学准备在一条长150米的校道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?

  师:三种情况大家都想到了。大家再看看这条校道,你认为采取哪种方案更合适一些呢?

  生:两端都种

  2、抽取问题

  出示例题:(配图片)

  实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端都种,一共需要多少棵树苗?

  师:愿意帮学校算算吗?

  3、学生试解。

  4、汇报交流。

  生汇报,师:能说说你的解题思路吗?

  师:刚才我们从小的数据入手,探讨出规律,然后再用规律来解决数据大的问题。这种思路正是数学上常用的'“以小见大”。

  师:大家学会了这种方法吗?我们再来考验考验自己的掌握情况好不好?

  5、探讨只种一端

  师:如果学校想在这路的末尾建一座供师生休息用的小亭子,那又应该选用哪一种植树方案更合理?

  生:只种一端。

  (实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,只种一端,一共需要多少棵树苗?)

  学生试解。

  6、探讨两端不种

  师:我们再接再厉,学校后来还要在这条校道的另一端筑一个墙报,请大家想想,应采用哪种方案更合适呢?

  生:两端不种。

  (实验小学准备在一条长150米的跑道一旁种树,每隔5米种一棵,两端不种,一共需要多少棵树苗?)

  学生试解。

  五、小结方法——提升认识

  1、探讨方法

  师:大家能通过自己的努力把这么一道新的问题解决,我们应该感到高兴!但是老师认为还有更重要的方法更需我们去总结!

  师:大家再回头看看,我们是怎样一步一步把植树问题给解决的?

  (动手操作——提出猜想——画图验证——得出规律——解决问题)

  2、阅读课本

  (1)阅读例1

  师:今天我们学习的就是课本117页开始的数学广角,请大家打开书本。

  师:课本上的同学们遇到了什么问题,他们又是采取什么样的办法来解决的?

  生:画图,找规律。

  师:真是好方法!大家掌握了吗?

  (2)阅读例2

  师:阅读118页例2,看看课本中的孩子又遇到了什么问题,你能帮他们解决吗?

  生完成,交流。

  六、拓展练习

  1、听说大家聪明能干,又乐于助人市政规划局的同志找来了,他呀,想请大家帮个忙,(出示119页做一做1)

  2、生尝试解答。

  3、全班交流。

  七、全课小结

  师:通过今天的学习,你有什么收获呢?

  生畅谈自己的收获。

  师小结:收获方法比收获知识更重要,祝贺大家!

  板书设计:

  植树问题

  两端都种棵数=间隔数+1

  两端不种棵数=间隔数-1

  只种一端棵数=间隔数

植树问题教学设计14

  课题

  植树问题(二)

  课时

  1

  班级

  四年级

  编写者

  林英

  一、教材内容分析

  人教版四年级下册第8单元书120页

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、使学生理解并掌握一个封闭图形的植树问题的规律。

  2、学会用不同的方法分析具体的数学问题。

  3、经历数学问题的探究过程,体验用不同的思路解决问题的方法。

  4、沟通数学知识与生活之间的密切联系,激发学生的学习兴趣,培养学生的动手操作能力,发展学生的发散思维。

  三、学习者特征分析

  学生已经初步掌握关于一条线段的.植树问题,但是,这个内容学生理解起来还是比较困难,特别是中下的学生。因此,在这基础之上,要让学生借助围棋盘,动手摆一摆,通过小组合作来一起探讨封闭曲线中的植树问题。

  四、教学策略选择与设计

  自主探索合作交流总结规律

  五、教学环境及资源准备

  投影仪,每小组一副围棋。

  六、教学过程

  教学过程

  教师活动

  预设学生行为

  设计意图及资源准备

  一、创设情境

  教师投影出示教材第120页例3情境图。

  教师:图上两位小朋友在干什么?(下围棋)

  你对围棋有哪些了解?

  师:在这小小的围棋盘下可有不少数学问题呢!

  板书课题:植树问题(二)

  让学生畅所欲言。

  吸引学生的注意力,激发学生的学习兴趣。

  二、探究新知

  (1)教师投影出示围棋盘。

  师:在围棋盘上一个点可以放一个子。

  (2)出示例3。

  围棋盘的最外层每边能放19个棋子。最外层一共可以摆多少个棋子?

  师:同学们算得都正确。还有其他的方法吗?

  师:你发现了什么?

  学生通过分析比较会发现:围棋盘最外层摆的棋子数等于最外层每两个棋子间的间隔数。

  (1)学生读题,理解题意。

  (2)动手在围棋盘上摆一摆,数一数,小组合作探究。

  (3)学生汇报。

  通过动手摆,认真的观察判断,分析比较,从中发现规律。培养学生的发散思维,动手能力。

  三、反馈应用

  (1)教材第121页做一做第1题。

  教师投影出示情境画面,出示第1题。

  (2)教材第121页“做一做”第2题。

  ①讨论:可以怎么摆放?

  ②最少需要多少盆花?

  (3)教材第121页“做一做”第3题。

  学生读题,理解题意。

  学生汇报。

  学生在小组中合作完成,然后教师指名汇报,全班集体订正。

  四、全课小结

  通过今天的学习活动,你有什么收获?

  板书设计:植树问题(二)

  例3:

  a.19×2+17×2=72(个)

  (19+17)×2=72(个)

  b.18×4=72(个)

  c.17×4+4=72(个)

  封闭图形:植树棵数=间隔数

植树问题教学设计15

  教材分析

  两端植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树的要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。

  学情分析

  让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现绿化的重要性。

  教学目标

  1、理解在线段上植树(两端栽)的情况中“棵数=间隔数+1”的关系。

  2、利用线段图理解“棵数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距的关系,解决生活中的实际问题。

  3、能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意。

  教学重点和难点

  [教学重点]:用不完全归纳法总结并理解“点数=间隔数+1”。

  [教学难点]:掌握用线段图解决生活中的数学问题的'方法。

  教学过程

  一、创设情境

  1、听唱歌曲《春天在哪里》,让学生感受春天的美好。

  2、比较两组图片的不同,让学生说出植树对人类的重要意义,引出本节课所要学习的的植树问题。

  二、探究新知

  (展示题目)

  (一)宝塔山下有一条长20米的小路,一边等距离植树,两端都栽,可以怎样植?用线段图表示你的方法。(小组讨论)、

  1、学生画线段图表示,教师巡视指导。

  2、指名回答。

  3、教师把学生的想法用表格出示如下:

  4、引导总结:

  5、生:手指线段图

  师:在线段图上,点数和间隔数又有怎样的关系呢?

  生:点数=间隔数+1

  6、师:总长与间距和间隔数又有怎样的等量关系呢?

  生:总长=间距×间隔数

  7、尝试应用:

  三、巩固新知

  四、小结本节内容

  五、教学作业