平行四边形的面积教学设计
作为一名为他人授业解惑的教育工作者,时常需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的平行四边形的面积教学设计,仅供参考,大家一起来看看吧。
平行四边形的面积教学设计1
教学内容:
人教版义务教育课程标准实验教科书《数学》五年级上册第80—81页。
教学目标:
①理解并掌握平行四边形的面积计算公式。
②会运用公式正确计算平行四边形的面积。
③培养操作能力和推理能力,养成积极思考的良好学习习惯。
教学重点:
理解并掌握平行四边形的面积计算公式。
教学难点:
平行四边形的面积计算公式的推导。
教具和学具:
电脑、课件、平行四边形、长方形、剪刀、尺。
教学过程:
一、前提测评。
1、(课件出示长方形)这是什么图形?长方形有什么特征?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]
2、(课件出示平行四边形教具)这又是什么图形?平行四边形有什么特征?
3、指出平行四边形对边上的高。
二、认定目标。
1、(出示平行四边形)谈话引入:你想知道这个平行四边形面积有多大吗?[板书课题:平行四边形的面积]
2、看到这个课题,大家想学习哪些知识呢?
三、导学达标。
(一)、用数方格的方法求平行四边形的面积。
(1)以前我们用数方格的`方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(电脑显示数方格的方法)
⑵引导学生比较方格图中两个图形的数据之间的关系。设问:根据数据你发现了什么?
(3)谈话:虽然我们用数方格的方法求出这个平行四边形的面积,但如果要求一个很大的平行四边形果园的面积,用这种方法方便吗?(不方便)既然不方便,我们不数方格能不能用公式计算平行四边形的面积呢?
(二)、推导平行四边形的面积计算公式。
⑴、学生实验操作。
谈话:请拿出你的平行四边形, 想办法把平行四边形剪、拼成长方形。
在剪、拼前,大家想一想长方形的特征是怎样的?
a、学生实验操作。
b、问:你是怎样把平行四边形剪、拼成长方形的?
c、电脑显示剪拼过程。
⑵、讨论拼成的长方形与原平行四边形的关系。
a、谈话:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?
①平行四边形与拼成的长方形的面积有什么关系?
②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?
③长方形的面积公式怎样表示?
④平行四边形的面积公式怎样表示?
b、谈话:请看屏幕, 根据提纲大家仔细观察平行四边形与拼成的长方形有什么关系。(电脑显示拼成的长方形的长、宽、面积与原平行四边形的底、高、面积的关系。)
c、板书:
长方形的面积=长×宽
‖ ‖ ‖
平行四边形的面积=底×高
d、齐读两遍公式
(三)实际运用。
1、导语:我们理解并掌握了平行四边形的面积计算公式,那么,会运用公式正确计算平行四边形的面积吗?
2、学生运用公式计算方格图中的平行四边形的面积。
⑴、学生计算。[板书:6×3=18(平方厘米)]
⑵、谈话:运用公式和数方格的方法求这个平行四边形的面积,结果一样吗?(一样)哪一种方法方便?(运用公式)因此,以后我们一般运用公式求平行四边形的面积。
3、强调运用公式计算平行四边形面积的条件。
师小结:由此可见,运用公式求平行四边形的面积必须知道哪两个条件?
4、谈话:我们已经知道平行四边形的面积公式,对于一些实际问题大家有信心去解决吗?请看例题。
⑴、出示例题,学生默读一遍:
一块平行四边形菜地,底长32.5米,高23.5米,它的面积是多少?(得数保留整平方米)
⑵、审题:题中已知什么条件?要求什么?求这块菜地的面积够条件吗?
(电脑显示菜地的透视图,并闪动菜地的底和高)计算结果要求怎样?
⑶、学生列式计算,一生板演。
⑷、评讲。
(五)、实际应用训练。
①课本p72.2
②p73.5
四、教师总结:你有什么收获?
五、谈话:刚才你们不是想知道自己做的平行四边形的面积有多大吗?
看谁算得最快?
六、作业:72页
评议记录:
本节课教学过程完整合理,教学方法选用恰当,重难点突破较好,师生互动,生生互动合理,活泼有序,板书设计合理,教态亲切自然,较好地完成了本节课的教学目标。
本节课不足之处是教师在教学过程中,讲话声音略显小了一些,激情不够;偶尔有一句不够准确的数学语言,望教者在今后的教学中加以改进。
平行四边形的面积教学设计2
一、教学目标:
1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2. 通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
二、教学重点、难点:
教学重点:平行四边形的面积的计算
教学难点:平行四边形的面积公式的推导过程
三、教具准备:
课件、方格纸、信封、平行四边形若干个
四、学具准备:
平行四边形四个,三角板,直尺,剪刀。
五、教学过程:
一、导入:
1.看点猜图形:
师:顾老师想考考大家的眼力。请看大屏幕。(出示一幅格子图淡、细;四个点依次闪烁出示)
师:如果把刚才的四个点依次相连,谁知道能组成什么图形?(问两个同学,大家都同意吗?)
2.说一说底和高:
师:看来你们都有一双火眼金睛。如果顾老师告诉你们,每一个小正方形的面积都是1平方厘米。那么这个平行四边形,底有几厘米,高有几厘米?[课件里出示,底( )厘米,高( )厘米]
3.导入新课:
师:早在上学期我们已经认识了平行四边形。今天这节课,我们继续研究平行四边形的有关知识。[板书:平行四边形]
二、新授:
(一)操作猜想
1.利用格子图画平行四边形,并说明底和高:
(1)师:同学们的手上都有这样一幅格子图,你能在上面像顾老师这样画一个平行四边形吗?(学生回答:能)画完以后,请你数一数底有几厘米,高有几厘米。(学生试画。)
(2)师:都画完的吗?请哪位同学上台展示自己的作品?(挑两个同学的作品上台展示。分别问生:你的底有几厘米,高有几厘米?对的打上勾)
2.利用格子图,数面积
(1)一起数。
师:大家继续看大屏幕。我们已经知道屏幕上的平行四边形,底是5厘米,高是3厘米。那你能数出它的面积有几平方厘米吗?……让我们一起看着大屏幕数一数。(先数出整格的,一块块点击,并显示红色。当数到不是满格的时候,停顿……也就是说这边的这个图形可以与那边那个拼成一格。是的,有些图形可以拼起来数。)
(2)独立数后同桌互查。
师:会数了吗?(生回答:会)请你反自己刚才自己画的平行四边形数一数,并把数出来的面积,填在图下面的括号里。
(生独立数,师巡视给予关注)
师:数完了吗?请同桌互相检查一下。(生互相检查)
(3)观察数据,交流发现。
师:请同学们观察一下你记录在图下面的三个数据,你有什么发现?(停顿稍许,等有学生一一举手了)把你的想法在四人小组里交流一下,看一下别人想的跟你是否是一样的?(四人小组交流)
师:请哪位同学代表小组汇报一下。(抽一生)说一说你的发现。(生:底和高乘在一起就是面积)(板书:平行四边形面积=底×高)你能用数据说明一下吗?(我的平行四边形,底是*,高是*,面积正好是它们的积*)
师:(另抽一生)你发现的结果跟他的一样吗?(一样)你是以哪些数据来证明的?(生回答后师评价)你的发现很有根据!
师:这些同学都发现了这个关系:底乘高等于面积。有没有不一样的?
(4)小结:
师:刚才同学们通过画图、数方格、观察等方法,发现平行四边形的底、高和面积之间有这样的关系。
(二)转化验证:
1.猜想:
师:如果屏幕中的图形去掉方格图(去掉屏幕中的方格图),你的图形中的.方格图也去掉,底和高之间还会有这样的关系吗?(有些学生有有,有学生则漠然)
师:看大家的反应,我们有必要对这样的关系进行更进一步的验证。
2.验证:
(1)猜想将平行四边形变什么图形。
师:(手里出示一个平行四边形)这是一个平行四边形,你能不能剪一剪,再拼一拼,把它变成一个我们已经会算面积的图形?(生静静思考一下)你说。(后抽生回答:长方形)
师:你的想像能力很好。还有谁想到了把它剪拼成一个长方形?(生一一举手)很好,有越来越多的人想到了。
(2)动手操作,剪拼成长方形。
师:那好。请同学们利用手头的工具,把这个平行四边形剪拼成一个长方形。(学生独立操作,指点几个快的同学有没有其他方法,指明按中间的高剪。)
师:(一半人已经做好)完成以后,想一想,得到的长方形与原来的平行四边形,存在着怎样的关系?
师:把自己的发现,在四人小组内交流一下。(四人小组交流)
(3)上台展示,并说发现:
师:谁愿意展示一下自己的作品(摸好底,抽二生,一人沿顶点上的高剪拼,一人沿图中间的高剪拼)
师:请你介绍一下,你是怎么想的?(……)哦原来你是这样剪的。其实你刚才在剪的时候,是沿着平行四边形的什么在剪?(高,多媒体展示)请你继续说一说,剪拼后的长方形与原来的平行四边形有什么关系?(注意启发和关注)(长方形的面积与平行四边形的面积相等;长方形的长和平行四边形的底相等;长方形的宽和平行四边形的高相等。)(板书:长、宽、长方形面积)
师:看来你跟你们小组的活动是非常有成效的。
师:还有不一样剪拼的方法吗?……(沿中间的高剪的方法)你刚才沿着剪的那条线,其实也是什么?(高)你发现的联系,跟那位同学一样吗?(一样的)谢谢,你下去吧。还有不一样的吗?(说一说)
(4)归纳:
师:刚才同学们开动脑筋,用了多种不同的方法,把平行四边形剪拼成了一个长方形,让我们为自己的成功而鼓掌。(拍手)
师:而且我们还发现了后来长方形的面积相当于平行四边形的面积(用两向箭头)。(长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高)
师:我们早就知道,长方形的面积等于长乘以宽,现在我们可以理直气壮地说,平行四边形的面积等于(底乘以高)。
师:现在我们可以说我们刚才的发现是完全正确的,是具有普遍意义的。
(5)用字母表示公式:
(屏幕出示一开始的平行四边形)
师:如果面积我们用s表示,底和高和a和h表示。你能用字母公式表示平行四边形的面积计算方法吗?(文字公式上面写一个字母公式)
师:(手指字母和文字公式)这两个公式是同学们今天需要掌握的新知识,让我们再用心地读一读。
(6)练习:
(大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)
师:这个平行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)
师:这个6是什么?(a),4呢?(h),那么底和高求出来的是什么?(s)。你后面用的单位为什么是平方厘米呀?
师:对的举手。……写错也没有关系,待会你订正一下。
三、小结:
师:一起告诉我,今天我们新认识了什么?(板书补充:的面积)你是用什么样的方法得到平行四边形的面积计算公式的?……哦,原来都是把我们的新知识转换成旧的知识。有没有什么疑问了?那么接下来让我们运用这个计算公式,来解决一些实际的问题。
四、练习:
1.猜一猜小精灵后面藏着谁(口答)?
(1)知道底和高;
(2)知道面积和底求高;你是怎么想的?如果知道面各和高,怎么求底?
(3)知道面积和高求底。
2.出示一个平行四边形,高与底不对应,求一求面积。
不能求,为什么?
给一个条件,求一条。
3.课件,长方形。变化成一个平行四边形?今天我们学了平行四边形的面积,根据你已经有的知识,判断这两个图形谁的面积大?
说一说为什么?班内分成两派,能不能说出充分的理由说服对方
根据自己的经验;相信自己的眼睛。
小结:数学学习要根据不同的情况得出灵活的判断。
平行四边形的面积教学设计3
一、教学目标
(一)知识与技能
让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。
(二)过程与方法
通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的'能力。
(三)情感态度和价值观
通过活动,培养学生的探索精神,感受数学与生活的密切联系。
二、教学重难点
教学重点:探索并掌握平行四边形面积计算公式。
教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。
三、教学准备
平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。
四、教学过程
(一)创设情境,激趣导入
1。创设情境。
(1)呈现教材第86页单元主题图。(PPT课件演示)
1。怎么制作PPT课件算平行四边形面积
2。五年级上册数学组合图形面积教案
3。PPT模板怎样制作平行四边形面积推导动画
4。PPPT怎么制作动画课件计算平行四边形面积
5。五年级上册数学图形与几何教案
平行四边形的面积教学设计4
一、教学目的和要求:
1、知识与技能:使学生通过探索,理解和掌握平行四边形的面积计算公式,会运用公式计算平行四边形的面积
2、过程和方法:通过操作、观察、比较的活动,初步认识并体会转化的思想及割补、平移的数学方法,培养学生观察、分析、概括、推到的能力,发展学生的空间概念。
3、情感与价值:培养学生的合作意识,提高学生主动学习数学的热情。
二、重点和难点:
1、掌握平行四边形的面积计算公式及其推到过程,会运用公式求平行四边形的面积。
2、用准确流畅的语言描述平行四边形面积公式的推到过程。
课程类型:新授课
教学方法与手段:实践活动、合作学习、自主探索
教学过程:
情景导入(6—8分钟)
开场:看,今天的教室,和以往有什么不一样?(在大的阶梯教室里,有很多听课的老师)
师:今天有这么多老师和大家一起探讨有趣的数学问题,你们高兴吗?那我们就以最热烈的掌声欢迎敬爱的老师们!今天到底要探讨怎样的数学问
题,请看大屏幕。
出示情境图
师:仔细观察,你能从哪里发现哪些熟悉的图形?
学情预设:校门口的花坛,一个是长方形的,一个是平行四边形的;人行道
上的砖是正方形的……
师:同学们观察得真仔细,发现了这么多漂亮的'图形。
比较大小
师:我们再观察这两个花坛,猜猜看,哪个大?
学情预设:一样大、长方形大、平行四边形大。
师:有的同学认为长方形大,有的认为平行四边形大,有的认为一样大,这都是一种猜测和估计,想一想,怎样才能准确的比较出它们的大小?
学情预设:在猜测大小时,也就是比较它们面积的大小,直接比较面积的大小不行,只有把它们的面积计算出来才能准确的比较出来。
师:长方形的面积计算我们已经学习过了,而平行四边形的面积计算我们还不会,今天这节课,我们就一起来研究平行四边形的面积。
导入课题
板书:平行四边形的面积
探究新知(23—25分钟)
1、出示长方形和正方形(PPT出示)
师:以前我们通过数方格推到出了平行四边形的面积公式,对于平行四边形的面积公式,我们不妨也来试一试。
(1)数方格
师:请同学们在方格纸上数一数,然后填写表格,注意括号里的说明内容
学生活动:学生填写,教师巡视,后汇报
师:数方格的方法很不错,又快又准确,那以后我们就用数方格的方法求
平行四边形的面积,可以吗?那你有没有更简便的方法?
(2)用公式计算
2、猜想
师:谁能大胆的猜一猜平行四边形的面积计算公式?
板书:平行四边形的面积=底×高?
3、验证
师:平行四边形的面积到底是不是“底×高”,我们就一起来验证一下
(1)转化
师:请同学们小声的拿出课前老师让大家准备的学具,以四人小组为单位一起
合作,动手操作,想一想,如何验证?并思考如下几个问题:
你能将平行四边形转化成什么我们已经学习过的图形?
转化前后,什么变了?什么没有变?
转化后的图形与原来的平行四边形之间有怎样的联系?
学生活动:学生合作完成验证,教师巡视,后汇报并到展台上展示
(2)演示(教师用卡片)
介绍“割补”“平移”的数学方法和“转化”的数学思想
(3)借助幻灯片动态演示
4、结论
(1)观察发现
转化前后:图形的形状变了,面积没有发生改变
转化后长方形的长就是原来平行四边形的底,长方形的宽就是原来
平行四边形的高
板书:
长方形的面积=长×宽
平行四边形的面积=底×高
(2)描述过程
抽2—3个学生描述转化的过程
(3)看书
师:有没有更简单的办法描述平行四边形的面积公式
找答案。
板书:S=ah
5、运用
(1)平行四边形花坛的底是6m,高是4m,它的面积是多少?
S=ah
=6×4
=24(平方米)
答:它的面积是24平方米。
目的:演示计算过程,规范书写格式
(2)计算平行四边形的面积
目的:明白底与高的对应关系
(3)比较几个平行四边形的面积大小
目的:等底等高的平行四边形面积相等
三、课后小结:(5—7分钟)
这节课我们共同探究了什么数学知识?
怎样计算平行四边形的面积?
平行四边形的面积教学设计5
教学内容:
人教版小学《数学》五年级上册,平行四边形的面积。
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重点:探索并掌握平行四边形的面积计算公式。
教学难点:理解平行四边形的面积计算公式的推导过程。
教学过程:
一、巧设情境,铺垫导入
师:(在实物投影仪中出示教具,如下图)这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的?
(根据学生的回答,教师适时板书:长方形的面积=长×宽)
师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示,如下图)同学们看看,现在变成了什么图形?(平行四边形)
师:这样一拉,形状变了,面积变了吗?
师:(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?
(平行四边形的面积等于相邻两条边的乘积)
师:究竟这个猜想是否正确,下面我们一齐来验证一下就知道了。
请同学们用数方格的方法来算出这个平行四边形的面积,(教师把拉成的平行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是1cm2,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是32cm2,使学生明确 .拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积.
师:看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算吧。(板书课题:平行四边形的面积)
二、合作探索,迁移创造
1、图形转换
师:(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?(能)可以转换成什么图形?(长方形)
师:四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作)
2、探讨联系
师:同学们真能干,很快就把平行四边形转换成了长方形,请大家认真观察,转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?(小组讨论交流,引导学生边动手操作边观察,从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。)
师:(结合黑板上的图形说明)这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
3、推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积等于底乘高)
(教师根据学生回答板书:平行四边形的面积=底×高)
师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)
(教师根据学生回答板书:S=ah)
4、验证公式
师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,用实物投影仪显示)请同学们利用刚才推导出来的平行四边形面积公式来计算这个平行四边形框架的面积。(先让学生明确这个平行四边形的底和高各是多少,再列式计算。)
师:计算出来的结果和我们数方格得出的结果一样吗?(一样)
师:这证明我们所推导出来的平行四边形面积公式是正确的。
5、提问质疑
师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)
三、层层递进,拓展深化
1、算一算
师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
2、选一选
师:(课件出示,如下图)要计算这个平行四边形的`面积,下面几个选择,你选哪个?为什么?(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)
3、画一画
师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)
4、想一想
师:(课件出示如下图)学校里有一块草地,想在草地的一边修一条小路通向另一边,下面的有三种设计方案,你认为哪种设计方案的面积最小?为什么?(先小组讨论,再让学生自由地发言,引导学生从平行四边形的面积计算方法来思考问题。)
师:你发现了什么规律?(引导学生理解等底等高的平行四边形
面积相等。)
四、总结全课,提高认识
回顾刚才我们的学习过程,你有什么收获?
教学反思:
本设计巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。全程层层推进,环环相扣,流畅又不失创新特色。主要体现以下两个特点。
1、前后呼应,浑然一体
利用长方形框架巧设情境,复习长方形的面积计算方法,为平行四边形的面积公式推导作铺垫,然后把长方形拉成平行四边形,向学生提问:面积变了吗?引起学生的好奇与争议,以此为契机,再用数方格的方法来证明平行四边形的面积等于相邻两条边的乘积是错误的,激发学生进一步探讨平行四边形的面积计算的求知欲望。
把平行四边形的面积公式推导公式出来以后,让学生再一次验证公式,这一过程前后呼应,浑然一体,培养了学生严谨的科学态度。
2、合作探索,迁移创造
在推导平行四边形的面积过程中,教师给予学生充分的时间和空间,通过学生动手操作与合作交流,使学生主动地探索和发现平行四边形面积的计算方法。在这过程中,学生议论纷纷,各抒己见,主体地位发挥得淋漓尽致,充分体现了“学生是数学学习的主人”的全新教学理念,同时,点燃了学生。
平行四边形的面积教学设计6
教学内容:九年义务教育人教版六年制小学课本第九册64页及例1
教学要求:
1、使学生理解平行四边形面积计算公式的来源,初步掌握并学会运用面积公式。
2、培养学生动手操作能力,发展空间思维能力;培养学生的大胆创新意识和小组间的团结协作精神。
教学重、难点:理解面积公式的推导过程。
教学准备:几个相同的平行四边形、投影、课件、剪刀
教学过程:
一、故事引入、设计情趣
拍卖公告
拍卖:为了大力发展小城镇建设,本镇现有一块地皮欲拍卖,有意者请与新袁镇政府办公室联系。
新袁镇人民政府
20xx年11月1日
问:1、如果你想参加竞拍,那你应该知道哪些条件呢?
2、如果这块地是个正方形,那求它的面积应该知道那些条件呢?长方形呢?
3、如果是平行四边形,那应该知道什么呢?(板书:平行四边形面积计算公式)
二、动手操作、激发兴趣
(1)、用数方格的方法计算平行四边形面积
1、 出示一个平行四边形,引导学生按照每个方格代表1平方厘米,让学生说出有多少?(让学生讨论如果不满一格应该怎么办)
2、 出示一个长方形,再引导学生计算一下,说出结果。
比较一下:长方形的长、宽、面积分别与平行四边形的底、高、面积有什么关系?
小结:从上面可以看出,平行四边形的面积也可以用数方格的方法求出来,但数起来比较麻烦,如果是拍卖的那块地你还能数嘛?那想一想,能不能像计算长方形面积那样,找出计算平行四边形面积的计算公式?
从上面的比较中我们发现了平行四边形的底、高、面积分别与长方形的长、宽、面积之间的关系,那你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?
(2)、用割补平移法推导平行四边形的面积公式
3、 让学生拿出准备好的平行四边形进行剪拼(教师巡视)然后指名到前边来演示。
4、 课件演示平行四边形转化成长方形的过程
刚才发现同学们把平行四边形转化成长方形时,就是把从平行四边形左三角形直接放在剩下的'梯形的右边,拼成长方形,这样好吗?在变边剪下的直角换图形的位置时,怎样按照一定的规律呢?
(1)、先沿着平行四边形的高剪下左边的直角三角形。
(2)、左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
(3)、移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
(3)、引导学生比较
5、 这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积有什么变化?为什么?
6、 这个长方形的宽与原来的平行四边形的底有什么样的关系?
7、 这个长方形的宽与原来的平行四边形的高有什么样的关系?
归纳总结:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别与原来的平行四边形的底、高相等。
(4)、引导学生总结平行四边形面积计算公式
8、 这个长方形的面积怎么求?(板书:长方形的面积:长*宽)
9、 那么平行四边形的面积怎么求?
(5)、教学用字母表示平行四边形的面积公式
S=a × h (告知S和h的读音)
说明含有字母的式子里,字母和字母中间的乘号可以记作“。”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h 或S=ah
(6)、应用总结的面积公式计算平行四边形的面积
10、 回到课件首页,说一下那块地皮的底和高,引导学生想想根据什么列式?
11、 完成后让学生看书第65页例1
12、 测测自己准备的平行四边形量一量它的底和高各是多少厘米?再求出面积。
三、巩固、练习
略
四、作业
课后练习题
平行四边形的面积教学设计7
教材分析
本内容在教科书的第79至81页。包括引入、用数方格的方法计算面积和探究平行四边形面积计算公式三个环节。
学情分析
在此之前学生已经掌握了平行四边形的特征以及长方形、正方形面积计算方法,它们是进一步学习其他平面图形面积和立体图形表面积的基础。
教学目标
1、使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学重点 理解公式并正确计算平行四边形的面积。
教学难点
用割补的方法把一个平行四边形转化为一个长方形,推导出平行四边形面积的计算公式。
教学准备每人准备一个长方形、平行四边形和一把剪刀。
教学过程
(一)剪剪拼拼,渗透转化。
(每生发一个长为10厘米,宽为15厘米的长方形)
师:同学们,这种形状的图形你们可是再熟悉不过了,你们能根据老师给的条件快速算出它的面积吗?
师:今天我们要给长方形来变变样。
师:你有办法马上算出这个图案的面积吗?
师:为什么这么快就算出来了。
师:大家想一想,这个图案和变样之前的长方形相比,什么变了,什么没变?
师小结:转化思想。
(二)创设情境,探究新知。
1、猜测平行四边形面积的计算方法。
师:我们手中都有一个平行四边形,如果让你来计算它的面积你想知道它的哪些数据?这么多方法,到底哪种对呢?
2、组织探究活动。
同桌合作活动,活动前思考:
想一想,你准备把平行四边形转化成什么图形,为什么?
提示:在分割时,先用直尺和铅笔画出直直的虚线,再用剪刀小心地剪开。
边操作边思考:
转化后的图形与平行四边形有什么关系?
你认为平行四边形的面积该如何计算?
4、交流探究结果
师:先请这组同学来给大家介绍他们是如何将平行四边形转化成长方形的。
5、推导面积公式
师:我们成功地把平行四边形转化成了长方形,你还发现了什么关系?
小结:回顾一下观察的全过程:我们是沿着平行四边形的一条高将它剪开,通过平移转化成一个长方形。因为这是一次等积变形,所以长方形的面积等于平行四边形的面积。我们还看到长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的面积等于长乘宽,所以推导出平行四边形的面积等于底乘高。
长方形的'面积=长×宽
平行四边形的面积=底×高
师:如果用S表示平行四边形的面积,用a表示它的底,用h表示它的高,平行四边形面积的字母公式是什么呢?S=ah
(三)练习巩固,课堂拓展
1、求下面平行四边形的面积。
2、出示练习十五第一题,独立完成。(强调书写规范,点一下为什么要把停车位设计成平行四边形的)
3、判断:哪个平行四边形的面积是2×3=6
4、看谁算得快
5、睁大眼睛,别看花眼啦
6、书本练习十五第7题。
7、书本第83页第5题。
平行四边形的面积教学设计8
教学内容:
五年级上册第79—81页。
教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
掌握平行四边的面积计算公式,并能正确运用。
教学难点:
把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。
教学方法:
动手操作、小组讨论、演示等
教学准备:
每个学生一把剪刀,一个平行四边形
教学过程:
一、导入:
1、出示课本P79主题图,“这是一幅街道图,仔细观察,找一找图中有哪些学过的图形?你会计算哪些图形的面积?”板书:长方形的面积=长X宽
2、“同学们真会用数学的眼光观察,老师还有一上问题,门口的这两个花坛哪一个比较大呢?”
二、探索新知
1、用数方格的方法验证:
我们把这两个花坛按比例缩小画到纸上,用数方格的方法数数看,它们的面积各是多少。注意:这里的每个方格表示1平方米,不满一格的都按半格计算。”让学生打开书第80页,先独立思考并数一数,填一填下面的表格,然后再和同桌互相交流。(注意再引导学生找找平行四边形的底和高分别是哪里)“观察表格中的数据。你发现了什么?
2、猜测:
谁能根据表格中的数据,大胆地猜测一下,平行四边形面积的计算方法是怎样的?这个猜想到底对不对呢?
3、探究平行四边形面积公式
不数方格,你有什么好方法验证?能把平行四边形转变成我们学过的图形来计算它的面积吗?可以转变成什么图形呢?怎么样才能用最简单的方法把平行四边形转变成长方形?(小组讨论)请同学们借助手中的平行四边形、剪刀等学具剪一剪,拼一拼(学生操作,四人小组比一比谁剪得快、好)
学生边操作边叙述自己实验过程。“你把平行四边形转化成了什么图形?你是怎样转化的?”教师演示。“这两种方法都沿着什么来剪?为什么?”
小组讨论:平行四边形转化成长方形后,什么变了?什么没变?
转化后,长方形的长与平行四边形的底有什么关系?宽与平行四边形的高有什么关系?
平行四边形的面积怎样计算吗?(板书:平行四边形的面积=底X高)(字母式)
小结:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形转化成一个长方形。这个长方形的面积与原来平行四边形的面积相等。这个长方形的`长与平行四边形的底相等;宽与平行四边形的高相等。因为长方形的面积等于长乘宽,所以平行四边形的面积是底乘高。
刚才大家不仅验证了前面提出的猜想,还继续应用了“转化”的思想,转化是一种很重要的数学方法,大家在以后还会经常用到。
4、应用:出示例1,谁来说一说你是怎么做的?
要求平行四边形的面积,我们必须知道哪些条件?
三、巩固练习
四、提高练习
五、总结
反思:
在本节课中,本来操作应能提高学生学习的积极性,但在引导学生把平行四边形转化成长方形时,交待不清,学生不明白老师要求做什么,怎么做。欠缺形式,气氛不够热烈。教师在备课时应预设学生的反应,不应只关注自己的设计和练习。语言不够精练,激励语言较少,生生互动少。
平行四边形的面积教学设计9
教学内容:小学数学(人教新课标实验版)五年级上册第79~81页。
教学目的:
1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2. 通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。
教学重点:平行四边形的面积的计算
教学难点:平行四边形的面积公式的推导过程
教具准备:课件、方格纸、平行四边形若干个
学具准备:平行四边形四个,三角板,直尺,剪刀。
教学过程:
一、课件出示单元主题图
(1),引入课题
师:(1)从图中你发现了哪些图形?
(2)你们会计算它们的面积吗?
(3)从今天开始我们就来学习第5单元多边形的面积的计算,(板第5单元多边形的面积)在这个单元中包括平行四边形,三角形,梯形,及组合图形面积的计算,这节课我们先来学习平行四边形的面积的计算。(板平行四边形的面积)
师:下面我们就以这两个花坛为例。课件出示(2)
二:通过数方格图,初步感知
(1)你觉得这两个花坛哪个更大一些?
生1:
(2)怎样比较两个花坛的大小?
(3)你会计算的平行四边形面积吗?
(4)用什么样的方法能计算出它的面积?
(5)下面就用数方格的方法在小组内来试一试。课件出示(3)
(6)最后你发现了什么?
通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形的面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
(7)根据你的发现你还能想到什么?
三、学生动手操作,自主探究
用数方格的方法可以得到平行四边形的面积。如果要我们计算我们学校的占地面积,这样就比较麻烦。下面我们不用数方格的方法还有没有更简便的方法呢?课件出示(4)
自主探究,推导公式
(组内学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。)
请三个小组的学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)
教师用课件(5)(6)演示剪——平移——拼的过程。
我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。出示讨论题。(7)
(1)拼出的长方形和原来的平行四边形比,面积变了没有?
(2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
(3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,课件演示(8)
学生讨论板书出平行四边形面积公式:
长 方 形 面 积 === 长 × 宽
‖ ‖ ‖
平行四边形面积 === 底 × 高
一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。
板书:s==a×h==a·h===ah
师:刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边
四:巩固新知,反馈练习。
1、课件出示例1(9),读题理解题意。学生试做,交流作法和结果。
2、实践应用(10)
3、思维拓展
(1)出示课件 (11),引导学生思考
(2)组织学生讨论
(3)课件演示等底等高的两个平行四边形的面积相等
五:课堂总结:通过今天的学习,你有那些收获?还有那些遗憾的地方?
评析:
王彬老师这一节课的教学是在64名学生的大班中实施的,可后,听课老师的一致评价是学生学得扎实,理解的透彻,教师多媒体课件展示效果好。也曾看过上海潘晓明老师执教此课的案例,比较之后,有下列思考:
一:大班教学中的.放与收的问题
新课程的数学教学提出国成型目标这一概念,即让学生体验知识产生、形成的过程,强调学生自主的思考与实践。在潘晓明老师的课例中,学生直接拿出纸上印好的平行四边形,然后自己动脑筋、想办法计算出纸上平行四边形的面积,教师参与学生活动,并适时启发、引导。很显然,这样的课堂是开放的,对于每一个学生也确实是一种挑战,但潘晓明老师执教的班级只有30名学生,对于64人的大班,这样开放的问题会导致一些学生无从下手,教师的指导也必然照顾不全,再加一节课的时间有限,所以,“放”到怎样的程度,如何能照顾到全体,王彬老师的课堂设计给我们做了一个很好的示范:从生活情境中一比大小引入,在学生已有的数方格的经验中先让学生感知平行四边形的面积与底河搞有关系,为下一步的学习进行铺垫,在进一步的探索中,学生指向明显,很快通过剪拼的方法将平行四边形转化成长方形。在此过程中,有教师的引导,也有学生的独立探索与思考,很好的把握了大班教学中放与收的关系。
二、多媒体课件演示的时效性问题
本课的多媒体课件使用避免了当先许多老师课件使用走形式,无时效的弊病,体现了以下特点:
1、现实情境的真实感让学生体会到数学学习的价值;
2、生动形象的过程演示,使学生充分理解算理;
3、丰富多彩的课后练习,拓展了学生的思路,开阔了学生的思维。
一节好课的标准很多,如何在一节课中既落实双基,又培养能力、发展智力,同时情感、态度、价值观也得到提升,这是我们每一位教师追求的目标,可在一节课的教学中,我们很难将这些目标全部落实,但我们可以以某一方面为着眼点。王彬老师的这节课或许能给与大家更多的启发。
平行四边形的面积教学设计10
教学目标:
1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。
2、探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。
3、在探索平行四边形面积公式的过程中,感受转化的数学思想;感受面积公式推导过程的条理性和数学结论的确定性。
教学重难点:
总结出平行四边形的面积公式。灵活运用平行四边形面积公式。
教具准备:
教师准备长方形一个、平行四边形两个;学生准备三个平行四边形。
教学过程:
一、复习导入
师:同学们,我带来了长方形和平行四边形,说一说你都知道长方形的哪些知识。
(学生说出长方形面积板书出来)
师:你还知道哪些平行四边形的知识?
(如有学生说不出高,师提醒)
师:长方形和平行四边形有哪些相同点,又有哪些不同点?
(平行四边形没有直角)
师:刚有同学说到了面积,那你知道这两个图形哪个面积大吗?
(学生说,比较)
师:那有同学说将这个平行四边形剪拼以后,它们两个的面积就相等了,这个想法非常棒。那我这还有一个平行四边形,这两个比较呢?
(学生说自己的想法)
师:那既然我们不能这样比较出它们的面积,那你们想不想知道还有没有其他的方法可以知道平行四边形的面积?
师:那我们这节课就一起来探索平行四边形的面积。(板书课题)
二、讲授新知
师:我们知道长方形有面积公式,能很快的算出它的面积,那平行四边形有没有呢?
师:有,那我们又如何来探究呢?我们学过长方形的面积,可不可以像刚才那位同学说的,将平行四边形转化成长方形我们再来探究呢?
师:那接下来我们就一起来探究平行四边形的面积公式,先将平行四边形转化成长方形。先不要动,请带着老师的几个要求去做。(课件)
师:(关注学生的剪法。让学生说说自己是怎样剪的,沿着什么剪的?如有很多同学剪的不标准,叮嘱沿着高剪以后,再让同学们剪一剪。多叫些学生来说想法。)
师:通过同学们的探究你发现了什么,找到平行四边形的面积公式了吗?
(生:说想法)
(课件在演示一下平行四边形的底和高相当于转化后长方形的长和宽)
师:那我有个问题,是不是平行四边形的面积就等于长方形的面积?
(不是,并不是所有的平行四边形面积都等于长方形的面积)
师:如果用S表示面积,那平行四边形的面积公式的字母表达是?
(板书:S=ah)
师:同学们今天很了不起,通过自己探索得到了平行四边形的面积公式,那就下来带着这个知识我们来完成几道题好吗?
三、巩固练习
师:1、计算下面平行四边形的面积,快速列算式不计算。
师:2、同学们答得很快,都正确。那接下来将这两题写在本上。
(集体订正答案)
师:如果要想求平行四边形的面积的'必备条件是什么?
师:哦,也就是知道高和底就能求出它的面积,是吗?
师:3、让我们一起来看看这道题。
(让学生说说想法)
师:也就是我们要找到相对应的底和高才能求出平行四边形的面积,那这条底边的高在哪?(课件出示)那能求出这条高的长度吗?
(板书:S=ahh=S/aa=S/h)
四、知识拓展
师:同学们现在请比较一下这两个平行四边形的面积。
(学生说想法)
师:那这个呢?对它们的都是相等的,因为它们等底等高。
五、小结
师:本节课你学会了哪些知识?
平行四边形的面积教学设计11
一、 案例背景:
执教班级是五(3)班和五(5)班,这两个班的学生思维都比较活跃,知识面较广。
教学内容是北师大版六年制小学数学第九册第25-26页探索活动(一)《平行四边形的面积》。课前,学生只学了长方形、正方形面积计算,而平行四边形在他们的头脑中还是个直观模型,有关平行四边形特征等知识一无所知。鉴于上述种种情况,对教学进行必要的知识铺垫,以利于这次探索活动有效地开展。从事数学教学工作以来,我崇尚在课堂教学中,尽量为学生创设“合作交流,自主探索”的空间。
二、教材简析:
平行四边形面积的计算,是在学生掌握了长方形和正方形的面积计算,对平行四边形有了初步的认识,清楚了其特征及底和高的概念的基础上进行教学的。若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外,掌握平行四边形面积公式的推导方法,对后面学习其他图形的面积计算会起到积极的迁移作用。
三、教学诠释与研究。
“ 平行四边形的面积”我教学不止一次。以前教的是人教版教材,我把教学的重点放在:借助剪、拼的方法。利用形变积不变的道理,把平行四边形转化为长方形,从而推导出平行四边形的计算公式。教学时,我让学生动手剪、拼,把平行四边形拼成了长方形之后,我就开始下面的启发式提问:①平行四边形的底与长方形的长有什么关系?②平行四边形的高与长方形的宽有什么关系?③转化前后两图形之间什么没有变?启发学生讨论,回答。这样组织教学,学生一般都能得出正确结论,课堂教学进程是一帆风顺的,“效果”是好的。
现在再来审视一下以前的这一节课堂教学,我发现在这种看似良好的效果背后,却潜伏着大的危机:在这样的课堂中,问题由老师提出,思维的路线由老师操纵,学生究竟有多少自主学习的成分?这样的课堂教学貌似“启发式”,实则是由教学操纵的“包办婚姻”,学生是没有“自主权”的。若长此以往,学生只能成为解决问题的高手,而不是发发现问题、提出问题的高手。我们知道,创造源自问题,这样的教育培养出的学生还有创造性吗?
如今,我又开始教学这一内容。不同的现在使用的是北师大版的新教材。这一内容出现在五年级数学上册,标题是“探索活动(一)平行四边形的面积”。教材首先展示了这样一个情境:公园准备在一块平行四边形的空地上铺草坪,如何计算这块空地的面积?教材这样安排的目的是让学生面对一个新的问题,思考如何去解决,从而使学生感到学习新知识的必要性;随后,教材提供了两种解决问题的方法:一种是通过数格子的方法,数出这个平行四边形的面积,一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积,最后,教材安排了观察平行四边形与长方形的关系,从中推导出计算平行四边形面积的公式。教材的编排意图是重在让学生自主探索,在探索活动中,使学生发现并理解平行四边形面积的计算方法。课堂教学时如何体现文本的这一“真谛”呢?新课程提倡教师要依据教材教,而不是教教材。在这一理念指导下,我对教材进行了重组。我根据班上学生的学习习惯和认识基础来创设问题情境。下面是课堂教学中的开始片断:
小黑板出示:
师:每个小方块的面积是1平方厘米,你能知道上面每个图形的面积是多少吗?
生:图1的面积是12平方厘米。
师:你们是怎么想的?
生1:我是一块块数的。
生2:我发现长方形长是4㎝,宽是3㎝,所以面积是4×3=12(平方厘米)。
师:谁能很快知道图2这个图形的面积吗?
生1:它的面积还是12平方厘米,因为还是由12个小正方形组成的。
生2:把中间的一排往左推一格,所以还是12平方厘米。
生3:把多的一块剪下来拼过去,正好是一个长方形,面积还是12平方厘米。
师:同学们真会动脑筋!我们可用割下来补过去的方法,将图形转变为长方形,很快知道它的面积。谁能很快说出图3的面积?
生1:在图形中间划出一个正方形,面积是9平方厘米,再把两边的三角形拼在一起,面积是3平方厘米,一共是12平方厘米。
生2:把左边的两个小三角形剪下来补在右边也正好是个长方形,面积是12平方厘米。
师:对于这个图形,我们用割补的方法能很快知道它的面积。
接下来,小黑板出示:
比较一下,图中的平行四边形的面积与长方形面积大小如何?
生1:我用数方格的方法:长方形有5×3=15个小方格,而平行四边形有11整格,加上8个半格拼成的4个整格,也是15个方格,平行四边形面积和长方形面积同样大。
生2:我把平行四边形左边的割下一个三角形,补到右边,就得到一个长方形,得到的长方形面积是15个方格,所以,平行四边形的面积也是15个方格,两个图形的面积大小相同。
师:把平行四边形割补成长方形,图形的什么变了,什么没有变?
生:图形的形状变了,面积大小没有变。
师:说得好!我们把割下的一块没有扔掉,而补在这里,正好得到一个长方形,图形的形状变了,但面积没有变。所以,原来的平行四边形的面积是15个小方格。两个图形的面积一样大。
反思:现代建构主义认为,知识并不能简单地由教师或其他人传授给学生而只能由每个学生依据自身已有的知识和经验主动地加以建构。所谓对新的学习材料的“理解 ”,就是学习者依据自身的已有知识和经验(认知绘声绘色)去解释新材料,使新材料与主体的已有知识、经验之间建立起实质性的、非任意的联系。在上述片断中,我设计了三个图形让学生直接说出它们的面积,并对学生用割补的方法给予肯定,为的是学生去探究平行四边形的面积计算方法时能产生学习的正迁移。接着,又设计了面积相等的两个图形,一个是长方形,一个是平行四边形,特别是两个图是在画有小方格的背景上画出的,我还暗示性的画出了平行四边形的高,让学生比较两个图形面积的大小,学生很快就能用数小方格的方法和“割补”法,为下面的推导出平行四边形的面积公式奠定了关键性的'一步课后反思时,我觉得这节课在引导学生推导平行四边形面积公式时铺垫、暗示还是多了点,如果抽掉那些铺垫,直接让学生把一个平行四边形剪拼成长方形,这时课堂上又会是怎样的情景呢?我期待着下一次的教学实践。
几经思考,第二天在另一个班上这一内容时,我决定我觉得该给学生更多的自主探索的空间。请看下面的教学片断:
师:刚才同学们用“割补”法将平行四边形转化成长方形,比出了两个图形面积的大小,是不是所有的平行四边形都能用割补的方法转化成长方形呢?请同学们拿出各自的平行四边形纸片,动手剪剪拼拼,看看行不行?
学生进行操作实践,加验证。
师:你们手中的平行四边形能不能转化成长方形?谁愿意上讲台前演示给大家看?
学生争着前来演示,沿着平行四边形地高剪开,拼成长方形。
学生演示时,师追问学生:是沿着哪一条线剪的?
生:沿着平行四边形地高剪开的。
师:为什么要沿着高剪?
生:因为长方形的四个角都是直角,不沿着高剪,就拼不成一个长方形。
师:由此看来,对于任何一个平行四边形都可以转化成一个长方形,长方形的面积你们已经会计算了,现在,你们能算出你们手中的平行四边形的面积吗?
有的学生在量着,有的则愣着,有的忍不住抱怨着:它没有告诉什么呀,怎么算?我悄悄地走过去,小声地问:你希望告诉你什么,你就能算了,你有办法自己去知道需要的条件吗?得到启发,该生也拿尺量了起来。
全班交流自己的结果。
生:我量得我手中的平行四边形的底是6㎝,高是4㎝,所以面积是6×4=24(平方厘米)。
师:你能不能告诉大家,计算平行四边形的面积为什么用平行四边形的底乘高?
生:因为用割补的方法把平行四边形转化成长方形,面积不变。我发现长方形的长相当于平行四边形地底,宽相当于平行四边形的高,所以平行四边形的面积是底乘高。
结合学生的回答,板书:
长 方 形 面 积 = 长×宽
平行四边形面积 = 底×高
师:用字母s表示平行四边形的面积,a表示它的底,h表示它的高,计算平行四边形面积的字母公式是怎样的?
生1:s=a×h
生2:还可以用小圆点代替乘号。
生3:还可以省略小圆点,写作:s=ah
师:这节课,你们学到了什么?
生:学会了计算平行四边形的面积。
师:是怎么学会的呢?
部分学生沉默,估计是学生不善于表达。
师:面对着求平行四边形面积的新问题,我们用割补的方法转化成学过的长方形,用旧知识解决了新问题。以后,我们还可以用这种思想方法去获取三角形,梯形面积计算等新知识。你们说这种思想方法重要吗?
反思:对于如何概括出求平行四边形面积的公式?我没有像以前那样由教师提出一个个小问题,然后学生回答,从而得出公式,而是直接先让学生计算手中的平行四边形的面积。如何计算平行四边形的面积呢?这一问题对学生来说具有极大的挑战性。学生居然算出来了,这说明学生的潜力是巨大的。课堂上一定要让学生积极地独立思考,自主探究。如果教师牵着学生走,铺垫太多,会妨碍学生独立思考,不利于学生的发展。平行四边形的面积学生既然求出来了,归纳求平行四边形面积的公式也就水到渠成了。
平行四边形的面积教学设计12
教学目标:
1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。
2.通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。
3.培养学生的合作意识,初步渗透平移和转化的思想。
教学重点:
探索并掌握平行四边形的面积计算方法。
教学难点:
理解平行四边形面积计算公式的推导过程。
教具准备:
一个长方形、一个平行四边形,PPT课件一套。
学具准备:
平行四边形、剪刀、三角板。
一、以旧引新,激起质疑
1.同学们,我们以前认识了很多平面图形,你能说出它们的名字吗?
2.老师这里有两张纸,猜一猜那张纸大一些??我们说谁大,其实是说它们的什么大?长方形的面积我们已经会计算了,这节课我们就来研究如何计算平行四边形的面积。(板书课题)
二、动手操作,探究方法
(一)利用方格,初步探究
1.下面我们就用数方格的方法,数出长方形和平行四边形的面积。图中的每一小格表示1平方厘米,不满一格的都按半格来计算,你能不能数出这两个图形的面积?(能)那大家就数一数吧!
2.学生独立数出平行四边形和长方形的面积。
3.谁来说说你数的结果?学生汇报
4.你们都是这个结果吗?通过数方格,我们得出这个长方形和平行四边形的面积都是24平方厘米,也就是它们的面积相等,现在大家再仔细观察表格中的数据,看看有什么发现?
你们发现这个关系了吗?看来长方形和平行四边形之间存在着非常密切的'联系。
我们刚才用数方格的方法得出了平行四边形的面积。可是在现实生活中,数方格的方法太麻烦了,而且,要是一个非常大的平行四边形,比如草坪或一块地,我们还能用数方格的方法吗?那我们能不能研究出一种更简便的方法,来计算平行四边形的面积呢?
(二)动手操作,推导公式
1.动手操作
a.下面我们就拿出课前准备的平行四边形,想一想:怎样才能把它变成以前学过的图形呢?怎么变?
b.静静地想,想好了吗?
c.动手操作,把这个平行四边形变成以前学过的图形。
d.谁来说说,你把平行四边形变成了什么图形,怎么变的?
2.合作探究
a.我们把一个平行四边形变成了一个长方形,请大家仔细观察拼出的长方形与原来的平行四边形,看看你能发现什么?
b. 小组讨论
c. 汇报。
3、如果用字母S表示平行四边形的面积,用a来表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积公式用字母怎么表示呢?
(三)指导点拨,总结方法
刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?
我们把平行四边形变成长方形的这种方法,是一种很重要的数学思想方法——转化。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的学习中我们会不断运用这种方法来解决一些问题。
孩子们,看,我们多厉害!通过剪拼,把平行四边形转化成了长方形,还总结出了平行四边形的面积计算公式!下面让我们带着我们的收获来解决问题!相信你们一定没问题!
例1.读题后独立解答一生板演
师:你们都是这么做的吗?老师要强调一点,在计算图形面积的时候,通常我们第一步要先把公式写上,这是求平行四边形面积的,所以我们要先写S=ah,再把底和高的数字代进去,再计算出结果,清楚了吗?
三、解决问题,拓展延伸
1、练习十五1题。
2、练习十五3题。
3、下面两个平行四边形,它们的面积一样大吗?
4、你能算出芸芸家这块菜地的面积吗?
四、全课小结,完善新知
这节课你有什么收获?
这节课,你们也运用自己的智慧,利用转化的方法,探究出了平行四边形的面积计算公式,并能应用公式解决一些实际问题,真了不起!
平行四边形的面积教学设计13
教学目标:
1、通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。
2、能正确地应用公式计算平行四边形的面积。
教学重点:
探索并掌握平行四边形面积计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程,体会转化思想。
教学准备:
课件,一个框架式可以活动的平行四边形教具,剪刀,为学生准备一张底为6cm、高为4cm的平行四边形纸张和方格纸。
教学过程:
一、激趣引入
1、创设情景
师:九一小学学校内有两个花坛,同学们看看它们各是什么形状?(生:长方形和平行四边形)
师:这两个花坛哪个大,我们要知道什么呢?(生:它们的面积)
师:哪个花坛的面积你能解决?为什么?(生:长方形花坛,我们学过长方形的面积)
师:回忆一下,以前我们是用什么方法得出长方形的面积的。
2、稳固复习
师:我这里将两个花坛的图形按照相同的比例缩小成这两个图形纸片(出示长方形和平行四边形纸张),还有一张透明的方格塑料片(每一小格代表1平方米)和一把尺子(每厘米代表1米),你能用这些工具得出这个长方形的面积吗?说说你的想法。
生:用数方格的方法:把长方形纸放到方格纸上,用计算的方法:用尺子量出长和宽计算。
师:用了数方格和计算的方法,那你观察下面这个图形的面积是多少呢?
生:把右边那块割下来不到左边空白处,就变成了一个长方形,面积不变。是6平方米。
师:比较下面这个两个图形的面积?你是怎么想的?(生:也是割补法,面积一样。)
师:那这个平行四边形你准备用什么方法得出它的面积呢?(生:数方格、计算、割补法)
师:下面我们就用这些方法来研究一下平行四边形的面积。(板书课题)
二、新知探究
1、数方格
师:课本上已经把缩略后的图形画到了书上,先读:在方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。),需要注意什么?
生:一格代表1m2,不到一格按半个计算。
师:自己数一数两个面积一样大吗?各是多少?(生展示数格子的方法,得出两个面积都是24m2)
2、推导公式
师:上面我用了数格子得出了平行四边形的面积,如果不数格子,你能直接计算出来吗?猜猜平行四边形的面积计算方法。(由长方形引导)
生:相邻两边相乘,或者底乘高。
师:(展示由长方形变拉伸为平行四边形)你觉得图形变化中面积怎么了?什么没有变?
生:面积变小了,但四条边都没有发生变化。
师:那说明平行四边形面积能用相邻两边相乘来计算吗?(生:不能)
师:好,到底是不是用底乘高来计算呢?刚才我们已经数出了两个图形的面积都是24m2,请你完成这个表格到课本上,让后两个人讨论,你发现了什么?
生:长方形的长和宽分别和平行四边形的底和高相等,长方形的'面积是长乘宽,所以平行四边形的面积是底乘高。
师:通过刚才的探究我们初步了解到了平行四边形的面积计算公式,到底是不是呢?是巧合还是必然呢?接下来我们用割补法验证一下。你准备把平行四边形转化什么图形来验证呢?
生:长方形。
师:请同学们根据前面的经验,两人一组,借助你们手中的平行四边形纸,可以画一画,剪一剪,拼一拼,看看能不能找到转化前后图形间的联系,并把你找到的联系在纸上写一写,让别人一眼就能看出你是如何推导出平行四边形面积计算方法的。联系下面几个问题进行探讨。
(1)面积还相等吗?
(2)转化后的长方形与原来的平行四边形有什么关系?
(3)长方形的长、宽与平行四边形的底、高有什么关系?
(4)怎么计算平行四边形的面积?
生:沿着一条高切下来,不到另一边就变成了长方形。
师:试着说说上面的四个问题。
生:面积不变,长方形的面积等于平行四边形的面积,长方形的长=平行四边形的底,长方形的宽=平行四边形的高,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。
(生边说师边演示,并进行适当的引导)
师:这个在哪呢?是另一个底上的高吗?(生:不是,是这个底上的高,底和高要对应。)
师:还有其他的方法吗?
生:演示方法。(课件演示两种方法)
师:平行四边形的面积=底×高,如果用a表示底,h表示高,你能用字母表示出平行四边形的面积吗?(生:s=ah板书)
师:平行四边形的面积大小是由()和()决定的。共同决定的。
3、回顾总结
回顾刚才的学习过程,谁能说说我们是怎样学平行四边形的面积的计算方法的?
三、练习巩固
(一)基础练习
1、平行四边形花坛的底是6m,高是4m,它的面积是多少?
2、下面哪个平行四边形的面积是2×3=6c㎡?(图见课件)
3判断:
①平行四边形的底是7米,高是4米,面积是28米。()
②a=5分米,h=2米,s=100平方分米。()
③平行四边形的底越长,面积就越大。()
④平行四边形的高越长,面积就越大。()
4、把一个用木条钉成的的长方形拉成一个平行四边形,它的()。
a、周长和面积都不变b、周长不变,面积变大c、周长不变,面积变小
5、一个平行四边形的高是5cm,底是高的1。4倍,这个平行四边形的面积是()cm。
(二)拓展提升
1、计算下面每个平行四边形的面积。
2、下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
四、总结提示
师:回忆一下,今天这节课有什么收获?
总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。
板书设计平行四边形的面积
数方格
长方形的面积=长×宽
计算平行四边形的面积=底×高(底高对应)
s=ah
割补法(转化)
平行四边形的面积教学设计14
[教学目标]
1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标:通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
[教学重点、难点]
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
[教具、学具准备]
多媒体课件、长方行纸、平行四边形纸、剪刀、三角板等。
[教学过程]
一、复习旧知,导入新课。
1、让学生回顾以前学习了哪些平面图形。(学习了长方形、正方形、平行四边形、三角形、梯形。)老师根据学生的回答,依次出示相应的图形。
2、老师总结多边形的概念,并让学生回答长方形、正方形的面积公式。
师板书:长方形的面积=长×宽
师:由于正方形是特殊的长方形,所以正方形的面积公式也可以归入到长方形的面积公式里面去。到目前为止,我们已经会求长方形、正方形的面积,但还有平行四边形、三角形、梯形的面积不会求。今天,我们就来继续学习多边形面积的计算。
二、动手实践,探究发现。
1、剪拼图形,渗透转化。
(1)小组研究
老师提出要求,让学生们以小组为单位,利用桌上的材料剪拼成一个平行四边形。
(2)汇报结果
第一种是把长方形关剪成了一个三角形和一个梯形,然后拼成一个平行四边行;第二种是把长方形剪成了两个三角形,然后拼成一个平行四边形;第三种是把长方形剪成了两个梯形,然后拼成一个平行四边形。
板节课题:平行四边形面积计算
2、动手实践,探究发现。
(1)老师提出新的要求,让学生以组为单位从这三种方法中任选一种重新剪拼,并思考:把长方形转化成平行四边形,什么变了,什么没变?根据长方形与转化后的平行四边形的联系,又能有什么发现?
(2)学生重新剪拼,互相探讨。
(3)汇报讨论结果。
师板书:平行四边形的面积=底×高
(4)让学生齐读:平行四边形的面积等于底乘以高。
(5)让学生明白如果要计算平行四边形的面积,必须知道哪些条件?
(必须知道平行四边形的底和高)
课件展示讨论题:平行四边形的底和高是否相对应。
(6)总结平行四边形面积的字母代表公式:S=ah (师板书S=ah)
(7)比较研究方法。
三、分层训练,理解内化。
课件显示练习题
第一层:基本练习
第二层:综合练习
第三层:扩展练习
下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?
四、课堂小结,巩固新知
小结:这节课我们学习了什么?你学会了什么?
附说课稿:
一、 教材与与学情分析
《平行四边形的面积》是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》中的内容。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形面积的计算公式,理解平行四边形特征的基础上进行教学的。
小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
教学目标:
1、知识目标:使学生在理解的基础上掌握平行四边形的面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2、能力目标:通过操作、观察、比较、运用等,发展学生的空间思维能力,逻辑推理能力,灵活变通能力,解决问题的能力;
3、情感目标:通过自评、互评,引导学生学会欣赏别人,认识自己;通过小组合作交流、师生互动,培养团结合作、和谐共进的思想感情。
教学重点、难点:
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用。
教学难点:通过学生动手操作,用割补的方法把一个长方形转化为一个平行四边形,找出两个图形之间的联系,推导出平行四边形面积的计算公式。
教具、学具准备:
多媒体课件、长方形纸、剪刀、直尺、
二、理念设计:
1、运用信息技术手段,优化数学课堂教学。
2、体现“数学从生活中来,再回到生活中去”。
3、构建一个以学生情感、思维、动作三维参与的“主动参与式”课堂教学模式。
三、教法、学法
教法:运用迁移规律,体现“温故知新”的教学思想;组织丰富活动, 引导学生自主探究;发挥多媒体优势, 促进多项互动生成。
学法:培养学生初步感知和运用转化的方法,引导学生通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
四、教学程序
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,结合本班学生特点,设计如下环节。
(一)复习旧知,导入新课。
新课开始,我先让学生回忆已经学过的平面图形,让学生进行反馈,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。
(二)动手实践,探究发现。
1、剪拼图形,渗透转化。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。
教材的编排意图是通过数格子的方法,让学生观察到平行四边形的面积与长方形的面积相等,并且通过剪拼的方法将平行四边形转化成长方形,让学生通过长方形的面积公式推导出平行四边形的面积公式。而我设计的是首先让学生展开丰富的想象,动手操作将长方形剪拼成平行四边形,(在这里学生充分的发挥了想象,想出了多种拼组方法:有的将长方形剪成了一个三角形和一个梯形;有的剪成了两个三角形;有的`剪成了两个梯形),从而感知图形之间的关系,建立表象。
2、动手实践,探究发现。
在这个环节中,我再次让学生开展小组探究活动,并提出更明确的要求,让学生从刚才的发现中任选一种重新剪拼,思考当长方形转化成平行四边形,什么变了,什么没变?你还能有什么发现?知识的再现将引导学生更深入的观察与思考,通过上面问题的思考,学生将对平行四边形公式的推导有了更深的认识,进一步认识到拼成的平行四边形的底相当于长方形的长,拼成的平行四边形的高相当于原来长方形的宽,平行四边形的面积就等于长方形的面积,从而推导出平行四边形的面积=底×高。这个环节让学生主动经历探索结论的过程,让他们一次次获得新的发现的喜悦,使思维始终处于激活的状态。
当学生已经推导出平行四边形面积公式后,引导学生认真看教材中的研究方法,进一步开阔学生的思维,让学生知道探究数学的研究方法是多种多样的,培养了他们的探究意识。
(三)分层训练,理解内化。
对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计三个层次的练习题:
第一层:基本练习:
计算面积,有利于学生加深对图形的认识,正确分清平行四边形底和高的关系。
第二层:综合练习:
通过不同的高引起学生的混淆,在计算中让学生明确在计算平行四边形面积时底要找出与它相对应的高,这样才能准确求出平行四边形的面积。并且根据已求的面积和另一条高,求出与这条高相对应的底。
第三层:扩展练习:
1、下面这两个平行四边形的面积相等吗?为什么?你还能在这里画出与这两个面积相等的平行四边形吗?可以画几个?
学生综合运用知识,进行逻辑推理,明白平行四边形的面积只与底和高有关,等底同高的平行四边形的面积相等。
2、把平行四边形模型拉近,它们的面积发生变化了吗?
通过这个过程的操作,让学生明白当一个平行四边形的周长一定时,越拉近它的面积就越小。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
(四)课堂小结,巩固新知
小结:这节课我们学习了什么?你学会了什么?
有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
本节课以探究为核心,以活动为主线,以学生为主体,自悟加引导,学生的自主探究活动始终贯穿于整个课堂。通过活动,学生“学数学、做数学、用数学”,学生的能力在活动中得到了发展,知识体系的建构也就顺理成章,水到渠成,教学自然能取得较好的效果。
当然,课堂教学艺术的追求是无限的,这节课也有需要进一步完善的地方,真诚地希望各位老师提出宝贵意见。在今后的教学中,我会继续研究,相信只要努力了,我的课堂教学艺术将会越来越完美。
平行四边形的面积教学设计15
教学内容:
小学数学五年级上册第87——88页
教学目标:
知识与技能目标:
理解并掌握平行四边形面积计算公式。
过程与方法目标:
能够运用公式解决实际问题。
情感态度与价值观:
通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。
教学重难点:
(1)教学重点:平行四边形面积计算公式的推导和运用。
(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。
教学用具:
1、课件
2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。
学情分析:
这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。
教学过程:
一、激情导课
(大屏幕出示校园情景图)
同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)
看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)
1、探究平行四边形面积计算公式。
2、运用公式解决生活中的实际问题。
师随着学生的回答在课题前板书:探究和运用
师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)
二、民主导学
任务一:自主探究平行四边形的面积计算方法。
同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)
任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。
提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)
自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。
展示交流:
1、先请数方格的小组上台展示。
预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。
我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。
(对小组进行评价)
师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。
2、请用割补法的`小组上台展示自己的研究成果。
预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。
(师随着生的表述板书)
长方形的面积=长×宽
平行四边形的面积=底×高
(对小组进行评价)
预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......
(对小组进行评价)
预设:(3)、师演示。
师:计算公式我们通常都可以用字母来表示。面积用S,底用a,高用h来表示,那么平行四边形的面积可以表示为:S=ah。
师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)
任务二:解决问题
出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?
自主学习:独立在练习本上解答,完成后与小组内同学交流。
展示交流:注意指导学生的书写格式。
三、检测导结
1、计算下面每个平行四边形的面积。
2、已知下面图形的面积和底,怎样求出它的高?
以上三题,做对一道得一颗星,全部做对得三颗星。
集体订正,组内互批。
反思总结:请同学们谈谈这节课的收获吧!
【平行四边形的面积教学设计】相关文章:
苏教版平行四边形的面积教学设计12-14
人教版小学数学平行四边形的面积教学设计11-08
《圆柱的表面积》的教学设计10-27
《平行四边形的面积》教学反思04-21
五年级上册平行四边形的面积教学设计12-08
五年级上册平行四边形的面积教学设计8篇03-03
平行四边形的面积教案11-27
《平行四边形的面积》教案06-23
三角形的面积教学设计04-02
什么是面积教学反思08-30