数学面积的教学设计

时间:2024-11-16 10:01:22 教学设计 我要投稿

数学面积的教学设计

  作为一位杰出的教职工,总不可避免地需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么你有了解过教学设计吗?以下是小编为大家收集的数学面积的教学设计,仅供参考,欢迎大家阅读。

数学面积的教学设计

  数学面积的教学设计 篇1

  设计说明

  1.在情境中建立数学与生活的联系。

  《数学课程标准》指出:数学教学必须从学生熟悉的生活情境和感兴趣的事物出发,为他们提供观察和操作的机会,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到生活中处处都有数学,感受到数学的趣味和作用。本设计在教学伊始,有效利用教材提供的具体情境,引导学生在观察、讨论中发展形象思维,建立数学与生活的联系,在学生建立了圆柱的表面积表象的同时抛出问题,激发学生的学习热情和探究意识。

  2.在操作中渗透转化思想。

  转化思想是数学学习和研究中的一种重要的思想方法。本设计为学生提供充分的动手操作机会,使学生经历用自己的'方法把圆柱的侧面化曲为直的过程,体会圆柱的侧面沿高展开所形成的长方形的长和宽与圆柱的有关量之间的关系。使学生在观察、推理中掌握圆柱侧面积和表面积的计算方法,在实际操作中体会转化思想,提高学生探究问题的能力。

  3.在应用中培养学生解决问题的能力。

  “培养学生应用知识解决生活问题的能力”是数学教学的重要任务之一。本设计重视引导学生把生活中的实际问题转化为数学问题,引导学生把数学知识与生活实际相结合,具体问题具体分析,灵活运用圆柱表面积的计算方法解决生活中一些相关的问题,使学生在分析、思考、合作的过程中完成对圆柱表面积的不同情况的探究,提高分析、概括和知识运用的能力。

  课前准备

  教师准备 多媒体课件

  学生准备 纸质圆柱形物体 剪刀 长方形纸板

  教学过程

  ⊙提出问题、设疑导入

  1.说一说。

  师:生活中,哪些物体的形状是圆柱?谁能和大家说一说?圆柱在生活中的应用非常广泛,和我们的生活是密切相关的。

  2.想一想。

  课件出示情境图:做一个圆柱形纸盒,至少要用多大面积的纸板?(接口处不计)

  师:要制作这个圆柱,你首先想到了哪些数学问题?“至少用多大面积的纸板”是一个关于什么数学知识的问题?

  3.汇报。

  小组合作,观察、讨论:求至少要用多大面积的纸板就是求圆柱的上、下底面的面积和圆柱的侧面积之和。

  4.交代学习目标,导入新课。

  师:圆柱的上、下底面的面积和圆柱的侧面积之和也叫圆柱的表面积,这节课我们就来探究有关圆柱表面积的问题。(板书课题)

  设计意图:创设情境,培养问题意识,引导学生思考,使学生在观察、讨论中初步感知圆柱表面积的意义,学生的思考和探究活动就有了明确的方向,为学习新知做好铺垫。

  数学面积的教学设计 篇2

  教学内容:人教版六数上第66页、67页

  教学目标:

  1. 了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

  2. 经历圆的面积计算公式的推导过程,体验实践操作、逻辑推理的学习方法。

  3. 培养学生合作探究的意思,感悟数学知识的内在联系。 教学重点、难点:1.理解圆面积公式的推导过程.

  2.会正确计算圆的面积。

  教学准备:课件、圆面积演示器、分组实验材料(圆形纸片、胶水、剪刀)、两个大小不同的圆

  教学过程:

  (课前游戏)

  猜谜:前面有一片草地(打一植物)

  草地上来了一群羊(打一水果)

  草地上有一群羊,突然来了一群狼(打一水果)

  师:我发觉大家刚才猜谜语时第一个猜得最困难,第二个第三个猜时脱口而出,这是为什么呢?有了解决一种问题的难舍难分,就可以用这种经验解决类似的问题。数学学习中也常是这样的。

  一、 导入:

  师:请看屏幕,马总是被人们用一根缰绳拴在固定的地方,马就困惑了,它的活动范围有多大呢?它绕来绕去会在一个什么样的圈中?会形成什么样的形状?这个面有多大?面有多大,用数学上的语言或者词语描述就是指它的什么?这节课我们就来学习《圆的面积》。(板书课题)

  二、 认识圆的面积:

  1.师:老师这有一个圆,请看这个圆,什么是这个圆的面积呢?谁愿意上来比划比划?(出示教具)一学生上台比划。

  师:圆表面的大小就叫做圆的面积。

  2.师:老师还带来了一个圆,请你将这两个圆比较一下,你发现了什么?

  生:一个圆面积大,一个圆面积小。

  师:那你发现圆的面积大小会与什么有关呢?结合这两个圆来好好观察观察。

  生:半径或者直径越长,圆的面积就越大。

  师:看来大家都知道了圆的面积大小与半径或者直径有关,但圆的面积究竟怎么样来计算呢,下面我们就一起来探究下。

  三、观察与尝试猜测:

  1.(出示正方形与圆的课件)

  师:我们先用一个简单的办法来猜想一下圆面积的公式。以圆的半径r为周长画一个正方形,再画这个的三个,你能计算出这个大正方形的'面积是多少吗?在圆中再画一个小正方形,小正方形的面积又是多

  少呢?

  生:大正方形的面积是4r,小正方形的面积是2r。

  2.师:圆与大正方形的面积相比,你发现了什么?再与小正方形相比,你又发现了什么?

  生:圆的面积比大正方形的面积小,比小正方形的面积大。

  师:那就是说圆的面积要比4r小,比2r大。那你猜一猜,圆的面积会是多少呢?

  生:3r。

  师:我们姑且先这样猜测圆的面积公式就是3r。大家究竟猜测的对与否,还需要验证。

  四、 小组合作、拼摆。

  1. 师:我们以前学习过平行四边形,你们还记得怎样计算平行四边形的面积吗?

  生:底*高。S=ah。

  师:还记得平行四边形的面积计算公式是如何推导出来的吗?

  是这样的吗?我们来看一看。(演示)我们把平行四边形的左边割了一部分,补到平行四边形的右边,这样就把平行四边形转化成了长方形。那你们还能记得三角形的梯形的面积公式又是怎样推导出来的呢? 生:三角形和梯形转化成平行四边形再推导的。

  师:这三种图形的面积公式都是先转化成以前学过的图形,再推导的。那我们能不能把圆转化成以前学过的图形来推导圆的面积计算公式呢? 222222

  2. 师:下面我们就来做一个实验,咱们把圆平均分成若干份,大家请看,每一份都像什么?

  生:三角形或者等腰三角形。

  师:对,它近似于一个等腰三角形。好的,同学生,我们可不可以用这些近似的等腰三角形拼成一个以前学过的图形呢?请你们拿出老师给你们准备好的工具开始吧!

  提出要求:各组一定要认真整齐地拼摆。小组同学快速地合作完成,完成后坐好举手示意。

  学生开始小组合作。

  3. 汇报合作结果。

  师:你们都拼成了什么样的图形?上台来展示一下吧。

  生分组上台展示。

  要求学生汇报自己是怎样拼的,拼成了一个什么图形。

  师:刚才我们把圆平均分成了16份、32份,那如果分得份数越多,你会发现什么?

  生:分得越多,越接近长方形。

  五、 面积计算公式推导:

  1. 师:这个近似的长方形是由这个大小一样的圆拼成的。这个圆的半径是r,那么这个近似的长方形的长和宽又是多少呢?请同学们同桌互相商量商量,开始吧!

  2.师:找到答案了吗?

  生:长是πr,宽是r。

  师:长方形的面积呢?请同学们在练习本上写一写。

  那圆的面积呢?也写一写,读一读吧。

  学生汇报。师板书。

  3.师:这个公式与我们之前猜测的做一下比较,你发现了什么?

  4.师:通过这个公式,我们可以看出,要求圆的面积必须先知道什么呢?

  生:半径。

  师:知道什么也可以求出圆的面积呢?

  生:直径、周长。

  师:下面我们就来试一试吧!

  六、 巩固练习。

  1. 平方的口算练习。

  1 2 3 4 5 6 7 8 9 10 20 3022222222222 2

  2.马的活动范围题:半径为2米,求周长。学生在练习本上完成。

  3.圆形花坛的直径是20米,求圆形花坛的占地面积。

  学生先汇报思路,再在练习本上完成。

  4. 树干的周长是125.6米,求树干的横截面积是多少?

  学生先汇报思路,再在练习本上完成。

  七、 总结:

  师:这节课你有什么收获?圆在我们的生活中,很常见,请看这是什么?课后你会自己用卡纸剪出这样一个风车,并计算出它的面积是多少吗?

  数学面积的教学设计 篇3

  教材说明

  这部分教材是在学生知道面积的含义,初步认识面积单位和学会用面积单位直接量面积的基础上教学的。学生在用面积单位直接量时,体验到这样做很麻烦。因此教材开始提出能不能找到其他比较简便的方法,以引起学生思考。

  教材采取引导学生自己试验、探索的方法来学习长方形面积的计算公式。让学生先用1平方厘米的小正方形量长5厘米、宽3厘米的长方形纸,在量的过程中找出长方形的面积与它边长有什么关系,从而找出长方形面积的计算公式。这样不仅有助于理解面积的含义,面积计算公式的来源,而且有助于发展学生的思维,培养学生的学习能力。

  教学正方形的面积计算,则在掌握长方形面积计算的基础上完全让学生自己去推想。这样有助于培养学生迁移、类推的能力。

  在练习题中,注意安排让学生实际计量的问题(如练习二十六第3、4题),这样有利于培养学生动手操作和用所学知识解决简单的实际问题的能力。练习还出现少数计算组合图形的面积的题目(如第12*题和思考题),但不作为共同要求,也不作为考试内容。

  教学建议

  1.这一小节可用2课时进行教学,教学长方形和正方形面积的计算,完成练习二十六的习题。

  2.教学长方形面积之前,可以给每个学生准备好一张长5厘米、宽3厘米的长方形纸,20个1平方厘米的小正方形。先让学生用摆小正方形的方法,求出这个长方形的面积。启发学生同时想下面的问题:怎样能较快地确定可以摆多少个1平方厘米的小正方形?这个长方形所含的平方厘米数与它的边长有什么关系?长方形的面积该怎样计算?然后让学生在自己操作和思考的基础上对三个问题逐一进行讨论。最后教师参照课本说明:长5厘米,沿着长边一排可以摆5个1平方厘米,是5平方厘米;宽3厘米,沿着宽边可以摆3排,一共是15平方厘米。(边说边演示),可以看出,长方形包含的平方厘米数,正好等于长和宽所含厘米数的积。所以要算长方形的面积只要把长边的厘米数和宽边的厘米数乘起来。写算式时要强调正确写出面积单位平方厘米。

  3.教学例题中正方形面积的计算,可以让学生联系长方形面积的计算方法推想出来。遇到学生中有不同的算法,如少数算成5×4=20(平方分米),可以引导学生讨论,这样计算对不对,为什么不对。结合正方形图使学生明确正方形每边长5分米,就想到一排摆5个1平方分米的小正方形,要摆这样5排,所以要算5×5。

  4.关于练习二十六中一些习题的教学建议

  做第3题时,要实际量出黑板的长和宽各是多少分米。如果遇到黑板的'长和宽不是整分米,可以向学生说明量到最后不够1分米的,按四舍五入法省略。就是满5厘米的,分米数加1,不满5厘米的舍去。确定长、宽的分米数以后,再计算黑板的面积是多少。

  第12题,要让学生明确这道题求的是什么,根据题目的已知条件能否直接求出?要先算哪一步?然后让学生自己去完成。

  本节的思考题,实际是求组合图形的面积。需要先分析出涂色部分与两个正方形的面积有什么关系。涂色部分可以分成左上和右下两个相同的图形,而每个图形的面积等于一个大正方形的面积减去一个小正方形的面积。每个大正方形的边长是4厘米,每个小正方形的边长从图上可以算出是4-2=2(厘米)。由此可以求出大正方形和小正方形的面积分别是16平方厘米和4平方厘米。从而算出左上部和右下部的面积各是16-4=12(平方厘米),阴影部分的面积应是12×2=24(平方厘米)。

  数学面积的教学设计 篇4

  设计说明

  本节课的内容是在学生已经学习了长方形、正方形、平行四边形、三角形和梯形的面积计算方法的基础上进行教学的。在教学中以引导学生经历知识的探究过程,突出思维训练为主要目标。

  1.以学生为课堂学习的主体,关注学生已有的学习基础和学习经验。在教学过程中,选择适合学生的学习素材,设计适合学生的教学活动,让学生自主地投入到学习中,教师只作为学生课堂学习的引导者、合作者。

  2.重视对学生估算意识和能力的培养。在教学过程中,引导学生主动进行观察、猜测、验证、推理与交流等数学活动,让学生经历数学知识的探究过程,感受成功的快乐。

  3.完成课堂活动卡,把学生的算法进行归纳总结,分类整理,让学生在感受算法多样性的同时,形成归纳概括的能力。

  课前准备

  教师准备:PPT课件

  学生准备:学具卡片

  教学过程

  ⊙创设情境,复习引入

  1.引导学生回忆常见平面图形的面积计算方法。

  (课件出示长方形、正方形等图形,指名回答各自的面积计算公式)

  2.引导学生观察组合图形的特点。

  (课件出示由长方形、正方形、三角形等组合而成的图形)

  师:同学们观察这些图形,它们分别是由哪些图形组成的呢?(学生观察后回答)

  师讲解:这样的图形,我们称为组合图形。今天我们就一起来探究组合图形面积的计算方法。

  设计意图:通过复习旧知,使学生兴致勃勃地投入到新知的学习中去,变好奇心为浓厚的学习兴趣。

  ⊙合作交流,探究新知

  1.估计组合图形的面积。

  (课件出示教材88页例题图)

  师:请同学们观察一下,这是什么图形?(组合图形)

  师:这是智慧老人家客厅的平面图。智慧老人准备给客厅铺上地板,你们知道应该买多少平方米的地板吗?

  (1)学生估计至少要买多少平方米的地板。

  (2)组内交流估计的方法。

  预设

  生1:把客厅看成长方形,6×7=42,客厅的'面积不到42m2。

  生2:把客厅看成边长是6m的正方形,估计其面积是36m2。

  2.实现转化,明确求组合图形面积的解题思路和解题方法。

  (1)质疑:怎样求这个组合图形的面积呢?

  (引导学生根据刚才的估计策略把组合图形转化成已经学过的规则图形,再计算其面积)

  (2)动手实践,探究转化的方法。

  (引导学生利用自己手中的学具,把组合图形转化成已经学过的图形)

  ①小组合作探究,将探究的结果填在课堂活动卡上。

  ②各组组长汇报本组的转化方法和转化结果,教师进行汇总。

  师:你们是怎样转化的?分别转化成了什么图形呢?

  分割法:

  添补法:

  割补法:

  (3)观察比较,优化解题方法。

  师:在这些转化方法中,哪些方法比较简单、容易计算呢?

  预设

  生:在这些方法中,图一、图二、图三、图四比较简单,容易计算。

  师:在进行图形转化时,我们的要求是简单、易算。

  数学面积的教学设计 篇5

  教学目标:

  1、知识与技能:

  (1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题、

  (2)培养学生应用已有知识解决新问题的能力、

  2、过程与方法:使学生经历操作,观察,讨论,归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力、

  3、情感,态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣、

  教学重点:

  探索并掌握三角形面积计算公式,能正确计算三角形的面积、

  教学难点:

  三角形面积公式的探索过程、

  教学关键:

  让学生经历操作,合作交流,归纳发现和抽象公式的过程、

  教具准备:

  课件,平行四边形纸片,两个完全一样的三角形各三组,剪刀等、

  学具准备:

  每个小组至少准备完全一样的直角三角形,锐角三角形,钝角三角形各两个,一个平行四边形,剪刀、

  教学过程:

  创设情境,揭示课题

  师:我们学校一年级有一批小朋友加入少先队组织,学校做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题

  (屏幕出示红领巾图)

  师:同学们,红领巾是什么形状的(三角形)你会算三角形的面积吗这节课我们一起研究,探索这个问题、(板书:三角形面积的计算)

  [设计意图:利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将"教"的目标转化为学生"学"的目标、]

  二,探索交流,归纳新知

  1、寻找思路:(出示一个平行四边形)

  师:(1)平行四边形面积怎样计算(板书:平行四边形面积=底×高)

  (2)观察:沿平行四边形对角线剪开成两个三角形、

  师:两个三角形的形状,大小有什么关系(完全一样)

  三角形面积与原平行四边形的面积有什么关系

  [设计意图:这一剪多问,学生在观察的基础上通过与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,诱发了心理动机]

  师:你想用什么办法探索三角形面积的计算方法

  (指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定,评价鼓励、)

  师:上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢

  (屏幕出示课本84页主题图让学生观察,引发思考)

  接着出示思考题:

  将三角形转化成学过的什么图形

  每个三角形与转化后的图形有什么关系

  [设计意图:学生由于有平行四边形面积公式

  的推导经验,必然会产生:能不能把三角形也转化

  成已学过的图形来求它的面积呢从而让学生自己

  找到新旧知识间的联系,使旧知识成为新知识的铺垫、]

  2、分组实验,合作学习(音乐)

  (1)提出操作和探究要求、

  让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼,摆一摆或剪拼、

  屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形

  ②拼出的图形与原来三角形有什么联系

  (2)学生以小组为单位进行操作和讨论、

  [设计意图:这里,根据学生"学"的需要设计了一个合作学习的程序,让学生分组实验,合作学习,为学生创设了一个自己解疑释惑的机会、]

  教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生:你是怎样拼的能说一说你的拼法吗(若学困生含糊的,动画显示一个作好高的三角形,移出一个与它同样大小的三角形,再把这个三角形旋转,移动,和下一个三角形拼成一个平行四边形、如图,让学困生模仿练习)

  [设计意图:不仅使学生找到了新旧知识的连接点与转化方式,而且使学生正确掌握操作方法,形成操作技能]

  (3)展示学生的剪拼过程,交流汇报、(音乐停)

  ①各小组汇报实验情况、(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报)

  可能出现以下情况:(用两个完全一样的三角形摆拼)

  (两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)

  ②课件演示:用旋转平移的方法将三角形转化成各种已学过的图形、

  师:通过实验,你们发现了什么

  引导学生得出:只要是两个完全一样的三角形都能拼成一个平行四边形)

  师:谁能说说,每个三角形的面积与拼成的平行四边形的.面积有什么关系

  生:拼成的平行四边形是三角形面积的二倍、

  生:每个三角形的面积是拼成的平行四边形的面积的一半、(评价,肯定)

  [设计意图:在大量感知的基础上,通过自主学习,再通过课件的演示使同学们更具体,清晰地弄清了将两个完全一样的三角形转化成平行四边形后,它们间到底有什么关系、同时又渗透了转化的数学思想方法,突破了教学难点,提高了课堂教学效率、]

  3、归纳公式

  (1)讨论:(屏幕显示提纲)

  a,三角形的底和高与平行四边形的底和高有什么关系

  b,怎样求三角形的面积

  c,你能根据实验结果,写出三角形的面积计算公式吗

  [由图形直观应用,进行观察,推理,加深对三角形的面积计算公式的理解、]

  (2)归纳交流推导过程,说出字母公式、

  根据学生讨论,汇报,教师进行如下板书:

  因为:三角形面积=拼成的平行四边形面积÷2

  所以:三角形面积=底×高÷2

  师:为什么要除以2

  生:……

  师:如果用s表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗

  结合学生回答,教师板书s=ah÷2

  [设计意图:当将三角形转化成已学过的平行四边形,找出它们间的关系,使学生感知了三角形面积的计算后,讨论:"三角形面积的计算公式是怎样的"从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,培养学生的抽象概括能力、]

  4、看书质疑、指名讲述课本中是怎样得出三角形面积公式的

  (养成看书的良好习惯)

  师:我们刚才是从两个完全一样的直角三角形,锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的你们还能用别的方法去推导三角形的面积公式吗

  如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定、

  老师课前做好下面课件帮助学生理解

  方法一:期量子论方法二:方法三:

  得出:三角形的面积=底×(高÷2)=底×高÷2(方法一)

  三角形的面积=底×(高÷2)=底×高÷2(方法二)

  三角形的面积=(底÷2)×高=底×高÷2(方法三)

  师:同学们真了不起,想到那么多的方法推导出三角形的面积公式、得到了这个公式,我们就可以求出任何三角形的面积、用这个公式计算三角形的面积(指板书),需要知道什么条件(反扣公式,加深理解)

  4,进行爱国教育

  师:其实早在20xx年前,我国伟大的劳动人民就开始会用这个公式来计算三角形土地的面积了、请同学们课后把85页的"你知道吗"看一看、

  三,应用新知,解决问题

  师:有了公式,下面我们可以帮学校解决问题了、(回应引入问题)

  1,(屏幕显示)出示85页例1:

  学生独立完成(一生板演),集体订正、

  师:你认为计算三角形的面积,什么地方容易出错(强调"÷2"这一关键环节)

  2,独立完成p85做一做、

  完成后交流,讲评、

  四,深化理解,应用拓展

  1、课本86页的练习第1题、课件出示下图:

  师:你认识这些道路交通警示标志吗一块标志牌的面积大约是多少平方分米

  (教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算、)

  2,课本86页第2题:你能想办法计算出每个三角形的面积吗、

  师:要计算出每个三角形的面积,需要什么数据要怎么做

  先让学生想,小组交流,再汇报,最后学生动手操作计算,评讲、

  3,课本86页第3题:已知一个三角形的面积和底

  (如右图),求高、

  师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗

  (生讨论汇报,再计算,反馈、)

  4、想一想,下面说法对不对为什么

  (1)三角形面积是平行四边形面积的一半、( )

  (2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平

  方米、( )

  (3)一个三角形的底和高是4厘米,它的面积就是16平方厘米、( )

  (4)等底等高的两个三角形,面积一定相等、 ( )

  (5)两个三角形一定可以拼成一个平行四边形、 ( )

  5,求右图三角形面积的正确算式是( )

  ①3×2÷2 ②6×2÷2

  ③6×3÷2 ④6×4÷2

  6、做课本86页第4题(然后汇报,评讲、)

  要在公路中间的一块三角形空地(见下图)上种草坪、1㎡草坪的价格是12元、种这片草坪需要多少元

  [设计意图:练习分三个层次设计,第一层基本练习,旨在巩固,熟练公式;第二层设计判断练习,学生在思考中,从正,反两方面强化对求积公式的理解;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过变题练习,训练学生思维的灵活性与逆向思维能力,同时深化对三角形求积公式的认识、]

  五,回顾总结,深化提高:

  1,师:这节课探究了什么是怎样探究的呢(渗透数学方法)

  (屏幕显示)让学生说一说图意:

  师:对!今天我们分小组通过动手操作,相互讨论,交流,用摆拼(还可以用折叠,割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种"转化"的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题、

  [设计意图:这两问引导学生从学习内容及学习方法对本课作出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于探究的精神、]

  六,课外作业:p87—5,6,7

  板书设计

  因为:平行四边形的面积=底×高,例1… …

  三角形面积=拼成的平行四边形面积÷2 s=ah÷2

  所以三角形面积=底×高÷2 =100×33÷2

  s=ah÷2 =1650(cm )

  旧知

  求平行四边形面积

  平移

  旋转180°

  平行四边形面积=底×高

  三角形面积=底×高÷2

  求三角形面积

  转化

  还原

  解决

  数学面积的教学设计 篇6

  教学目标:

  (一)能正确地比较亿以内数的大小。

  (二)能把整万或整亿的数改写成用万或亿作单位的数。

  (三)培养学生比较、分析的思维能力,养成良好的学习习惯。

  教学重点:

  亿以内的数位顺序。

  教学难点:

  大数的改写方法

  教学过程:

  一、复习准备

  在下面○里填上>、<或=,再说一说你是怎样比较的?

  999○1010 601○564 687○678

  提问

  1.第一组两个数你是怎样比较的?

  (三位数与四位数比,四位数一定比三位数大,因为三位数比一千小,四位数大于或等于一千。)

  2.第二、三组数都是三位数,你是怎样比较的?

  (两个三位数比较,百位上数大的那个数就大;百位上相同,十位上大的那个数就大。)

  二、学习新课

  教师谈话:我们已经学过万以内数的比较大小,今天我们要学习的第一个内容,是亿以内数的比较大小。(板书课题:比较数的大小)

  1.出示例题。

  提问

  ①五个数各是几位数?

  ②六位数位是什么位?七位数位是什么位?

  960万和166万,谁大谁小?

  9600000>1660000。(板书)

  ①这两个数各是几位数?

  ②这两个数都是七位数,位数相同的两个数怎样比较大小呢?先比较哪位上的数?

  ③两个数左起第一位百万位上分别是9和1,

  由此来看,位数相同,从高位开始比较。

  ③同学们推想一下,七位数与六位数比较呢?八位数与七位数比较呢?那么如果两个数的位数不同,怎样比较大小呢?

  (如果两个数的位数不同,位数多的那个数大,七位数比六位数大,八位数比七位数大。)

  出示第二组数:1220000,450000。

  提问:谁大谁小?

  启发学生逐步总结出完整的比较数的大小的方法。

  提问

  ①比较两个数的大小有几种情况?位数不同怎么比?

  ②如果位数相同怎么比?先要从哪一位比?如果左起第一位上的数相同,怎么比呢?

  指导学生阅读课本中关于比较两数大小方法的结语,举例说明。

  教师说明:“位数”是指一个数用几个数字写出来的(最左端的数字不能是0),有几个数字就是几位数。如99864是五位数,101010是六位数。“左起第一位”是数位,数位是指一个数中的数字所占的位置。如99864左起第一位是“9”,“9”是在万位上,101010左起第一位是“1”,“1”在十万位上。“数位”与“位数”是不一样的。

  练一练

  (1)比较每组中两个数的'大小,说说是怎么比的?

  (2)按照从小到大的顺序排列下面各数。

  40400 400400 44000 50004

  指导学生做第(2)题时,先比较位数的多少,再把位数相同的几个数进行比较,也可以把这四个数排成一竖行,相同数位对齐。如

  可以看出:400400,40400最小。再把它们从小到大编成序号,按序号进行排列:40400<4400<50004<400400就不容易错。

  2.教学把整万的数改写成用“万”作单位的数。

  出示50000,让学生读数。

  教师指出:这是一个整万的数。像这样整万的数,写成用“万”作单位的数比较简便。

  提问:万位在右起第几位?整万的数万位后面有几个0?

  把整万的数改写成用“万”作单位的数,只要把后面的四个0去掉,加上一个万字就行了。例如50000写成5万,或50000=5万。又如1800000写成180万,或1800000=180万。

  练一练把下面的数改写成用“万”作单位的数。

  (1)250000

  (2)3200000

  (3)1994年我国共生产自行车40450000辆。

  其中第(3)题强调单位名称,即4045万辆。

  (三)巩固反馈

  1.总结性提问

  (1)今天我们学习了哪些内容?

  (2)怎样比较两个整数的大小?

  (3)怎样把整万的数改写成以万作单位的数?

  2.发展性练习。

  指导学生做10页2、3题。

  第3题指导性提问

  (哪个数最小,哪个数,用什么方法比较的?)

  3.课后练习

  课堂教学设计说明

  本节课是在学生基本上掌握了亿以内数的读写方法以后,学习比较两个数的大小,把整万的数改写成以万作单位的数。虽然内容不十分集中,但与过去学过的旧知识联系紧密。因此,教学过程的设计,采用帮助学生回忆有关的旧知识,引导学生探索出新方法。

  本节课分三个层次,分两段提出课题。

  第一层次是比较两个数的大小。由复习万以内数比较大小,引伸到比较亿以内两个整数的大小。分成位数不同和位数相同的两种情况,引导学生总结出比较两个整数大小的方法。

  第二个层次是学习把整万的数改写成以万作单位的数。第三个层次通过有针对性的练习,训练强化所学新知识,并适时引导,有利于培养学生的归纳推理能力。根据本节课的内容,教学中采用边讲边练的形式,对课本中的练习进行适当地指导。

  板书设计:

  比较数的大小和数的改写

  比较方法:位数相同,从高位开始比起。

  位数多的数比较大

  9600000=960万

  10000000000=100亿

  数学面积的教学设计 篇7

  教学内容:

  长方体和正方体的表面积的概念(第33~34页例题1及P36,T1~3)

  教学目标:

  ① 通过操作,使学生理解长方体和正方体表面积的概念,并初步掌握长方体表面积的计算方法。

  ② 会用求长方体表面积的方法解决生活中的简单问题。

  ③ 培养学生的分析能力,同时发展他们的空间观念。

  教学重点:长方体表面积的计算方法。

  教学难点:长方体表面积的计算方法。

  教学用具:长方体牙膏盒一个,长方体和正方体展开的教具各一个,学生准备长方体和正方体的纸盒各一个,剪刀一把。教学过程:

  一、预习提纲:

  1、预习教材第33~34页例题1。

  2、同伴合作,一个人准备纸盒正方体,一个人准备长方体纸盒。指出它的长、宽和高,并分别指出和长、宽、高相等的棱。

  3、把各自的长方体和正方体展开是什么形状,并标好上、下、左、右、前、后等各个面。

  4、思考:观察一下展开的形状中那几个面的面积是相同的?每个面的长和宽与长方体的长和宽有什么关系?

  5、练习:

  观察下面纸箱

  二、展示汇报:

  1、什么是长方体的长、宽、高?长方形的面积怎么计算?

  2、交流汇报。

  (1)通过预习,我们已经观察了一个长方体的纸盒展开的形状。那么现在我们就一起来讨论一下预习的两个问题:

  A、观察一下展开的形状中那几个面的面积是相同的?分别用"上"、"下"、"前"、"后"、"左"、"右"标明6个面,教师注意订正。

  B、 每个面的长和宽与长方体的长和宽有什么关系?

  3.小结:长方体或者正方体6个面的总面积叫长方体或正方体的表面积。

  学生齐读概念后,教师板书课题:长方体和正方体的表面积。

  (1)下面这个纸盒的表面积要怎么求呢?

  前后两个面:长0.7m宽0.4m,面积是0.7×0.4=0.28m

  左右两个面:长0.5m宽0.4m,面积是0.5×0.4=0.2m

  这个包装箱的.表面积是:

  0.7×0.5×2+0.7×0.4×2+0.5×0.4×2

  =0.35×2+0.28×2+0.2×2

  =0.7+0.56+0.4

  =1.66m

  或者:

  (0.7×0.5+0.7×0.4+0.5×0.4)×2

  =(0.35+0.28+0.2)×2

  =0.83×2

  =1.66 m 答:至少要用1.66 m 硬纸板。

  (2)比较上面两种解法有什么不同?它们之间有什么联系?

  三、课堂小结。

  1.、长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。

  2、你发现长方体表面积的计算方法了吗?

  结论: = 长×宽×2+长×高×2+宽×高×2

  长方体的表面积

  = (长×宽+长×高+宽×高)×2

  3、我们学习了长方体和正方体的表面积有什么用?(铺地砖、粉刷墙壁、计算长方体罐头商标纸的大小,都要用到这部分知识)

  四、巩固练习。

  完成P34“做一做。”学生独立分析已知条件和问题,“没有底面”是什么意思?讲评时要求学生说一说为什么“0.75×0.5”没有乘以2?

  五、检测、反馈:

  (一)完成P36练习六T1~3。

  2、选择:

  (1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是()。

  A、 2×7×2+6×7×2+6×2

  B、(2×7+2×6+6×7)×2

  C、2×7+2×6+6×7

  3、给一个长和宽都是 1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是()。(学生讨论)

  A、(1×1+1×3+1×3)×2

  B、1×1×2+1×3×4

  C、1×1×2+1×4×3

  讨论得出:底面周长×高=4个侧面的面积

  4、思考题:

  我们班级要办小小图书馆,需要一只长7分米,宽5分米,高6分米的铁箱现在有一张边长15分米的正方形白铁皮,能做得成吗?

  板书设计:

  长方体和正方体的表面积的概念

  = 长×宽×2+长×高×2+宽×高×2

  长方体的表面积

  = (长×宽+长×高+宽×高)×2

  课后反思:本节课的教学难点在于,学生往往因不能根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过看一看、摸一摸等来认识概念,理解概念。另外运用现代化教育手段,提高教学效率。

  数学面积的教学设计 篇8

  一、复习准备

  1.复习旧知,铺垫引导

  师:同学们还记得我们前两天学习的平行四边形和三角形的面积计算公式吗?还记得三角形的面积是怎样推导出来的吗?

  生:转化成平行四边形。

  (在学生说的同时,教师配以投影展示,让学生注意到图形的转化。)

  谈话:同学们对前面的知识掌握的真不错。

  二、新知探索

  (一)呈现实际情境,感受计算梯形面积的必要性

  师:这里有一个灌溉堤坝的横截面如下图,它的面积是多少?

  师:梯形的面积到底该怎么计算呢?今天,让我们共同来研究。(板书课题:梯形的面积)

  师:你认为我们该从哪儿入手研究呢?

  (学生思考片刻可能会回答:可以先转化为学过的图形)

  师:在我们生活中有很多这样的梯形,而且需要我们计算它的面积。那么到底该怎样计算它的面积呢?我有个建议,发挥小组的力量,共同合作探究。

  (二)提供材料,自主探究图形的转化过程

  1、提出小组合作的要求

  师:下面我们共同来研究梯形的面积计算方法。小组全作的要求如下:

  a.利用你们小组的梯形学具,先独立思考能把它转化成已学过的什么图形。

  b.把你的方法与小组成员进行交流,共同验证。

  C.选择合适的方法交流汇报。

  2.自主探究,合作学习

  (学生小组合作讨论,动手操作,教师巡视参与并给以适当的指导。让部分小组上黑板展示)

  3.全班汇报交流

  师:同学们已经用不同的方法转化成了我们学过的图形,哪一个小组先派代表给同学们讲解,其他时小组的同学可以随时提问。

  生1:我们小组的方法是用两个相同的梯形拼成一个平行四边形。

  (学生边动手演示,边说转化过程。)

  生2:我们小组是把梯形沿两腰中点剪开,变成两个小梯形,再转化成平行四边形。

  生3:我们取了两个相同的直角梯形,因此,拼成的图形是长方形。

  (三)探索、归纳梯形的面积计算公式

  师:同学们介绍了各种方法,现以第一种转化为平行四边形为例(实物投影出示),这一个梯形和转化后的平行四边形有什么联系?怎样推导其面积公式?

  生:梯形上、下底的和等于拼成后平行四边形的底,梯形的高就是平行四边形的高。

  生:梯形的面积是所拼平行四边形面积的一半。

  生:梯形的'面积=(上底+下底)高2

  (教师板书梯形面积计算公式)

  师:一个梯形的面积为什么要除以2?

  生:因为拼成的平行四边形有两个梯形,求一个梯形就需要除以2。

  师:请同学们再任选一种转化方法进行推导,验证梯形的面积计算公式和刚才的是否一致。

  师:如果用S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,那么梯形面积的计算公式应怎样表示?

  板书:S=(a+b)h2

  (学生在得出梯形面积的计算公式后,安排计算堤坝横截面的面积)

  三、联系实际,巩固运用

  1.试一试

  引入:梯形的用途很广泛,在很多物体中都经常看到梯形。下面我们来解决一些日常中的问题,计算下列梯形的面积

  (1)出示篮球场的罚球区图形,请计算出罚球区的面积。

  (2)出示汽车侧面玻璃,要制作这扇门的窗户需要多少平方厘米的有机玻璃?

  2.练一练第1、2、3题,让学生独立完成。

  3.思考题

  我们经常见到圆木,钢管等堆成下图的形状,求图中圆木的总根数,你有几种解答方法?

  四、课堂小结

  师:通过今天的上课,谈谈你的收获。

  案例分析:

  动手实践、自主探索与合作交流是形计算教学的有效策略,是学生学习数学的重要方式,本课的教学应该说较好地落实了这一理念。具体体现在:

  1.学习策略的变化是本节课最突出的一个特点。如:在探索新知这一环节中,改变了过去由教师讲解、代替学生操作的传统教学方式。通过动手实践小组内交流选择可行的方法这样三个步骤,完成了转化和归纳的全过程。突出体现了学生是学习的主人这一新理念。充分调动了学生学习的主动性,激发了学生探究的欲望。使学生在不断地探索、合作、交流中经历了知识的形成与发展的全过程,并从中体会到了探究所带来的乐趣。

  2.第二个突出的特点是把所学知识与实际生活紧密联系起来。如练习题的设计就突出体现了这一点。通过计算学生比较熟悉的篮球场中的罚球区图形的面积,某些汽车侧面的玻璃面积等实际生活中的问题,使学生体会到数学与生活的联系。培养了学生用数学眼光认识事物,应用数学的意识,从而进一步体会数学的应用价值。

  不足之处:学生手中的梯形学具应具有多样性(大小不同;大小相同;形状不同;形状相同),让学生在动手操作转化的过程中去体会:两个完全一样的梯形这一条件的重要性。

  数学面积的教学设计 篇9

  二.教学目标:

  1、通过教学活动,认识有些数据改写单位的必要性,能用“万”或“亿”作单位表示大数。

  2、掌握数据改写的方法。

  3、引导学生关注较大数据的实际意义。

  4、培养学生的良好书写习惯。

  三.教学重、难点:

  体会某些数据改写单位的必要性,能用万、亿为单位表示大数。

  四.教学准备

  在报刊杂志等媒体中收集一组有关面积、西部情况、海洋资源的大数的信息。

  五.教学过程:

  (一)体会数据改写的必要性

  教师出示从媒体收集来的一组数据改写的实例。让学生比较同样的.数据为什么要用不同的方法表示,让学生体会到数据改写的必要性。

  (二)探索改写方法

  1.出示中国地图,了解一些省、市、自治区的土地面积。

  让学生读出这些面积,问:如果要记录方便,这些数据可以怎样进行改写?

  2.学生先独立思考,再小组交流改写的方法。

  3.完成试一试第1、2题:进一步巩固改写的方法。

  (三)巩固与应用

  练一练第1题:先请学生说一说我国西部各省、市、自治区的情况以及它们的地理位置,然后出示各地区具体的土地面积,在学生读一读的基础上再请学生改写成以“万”为单位的数。

  练一练第2题:先让学生了解一些海洋的知识,特别是我国海洋的区域情况等。接着出示有关的数据,让学生读一读,然后讨论这些数据如何进行改写。

  (四)作业

  收集有关森林面积方面的数据。

  [板书设计]

  大数的改写

  为了读数、写数方便,有时需要把整万、整亿数写成以“万”或“亿”为单位的数。

  9600000 = 960万

  10000000000 = 100亿

  教学反思:

  这部分的知识虽是新知识,就知识本身而言,学生是比较容易掌握的,在教学中,我利用学生收集的资料,放手让学生学习,通过观察比较,在读写数的过程中让学生体会到改写大数的必要性。通过作业的反馈,学生知识掌握的比较好,怎样让学生体会到大数的改写在实际生活中的意义,是教师在教学中应该渗透给学生的,怎样让学生深刻的体会到这一点,本案例中做的还不够,需要大家进行一些有意义的尝试。

  数学面积的教学设计 篇10

  教学内容:

  圆环的面积计算。第68页例2。

  教学目标:

  1.使学生认识圆环,掌握圆环的特征,掌握计算圆环的面积方法。

  2.培养学生的动手操作能力,观察能力和想象能力,建立初步的空间观念。

  3.激发学生学习的兴趣。

  教学重点:

  掌握圆环面积的计算方法。

  教学难点:

  理解环形的.形成过程,形成圆环的空间观念。

  教学准备:

  多媒体课件,剪刀,有关环形制品。

  教学过程:

  一、情境导入

  1、用课件出示几个生活中的圆环。

  2、请学生列举生活中的圆环。

  师:在生活中圆环很多,这节课我们就来研究有关圆环的知识。

  板书课题:圆环的面积

  二、课前检测

  1、出示检测题,学生独立完成,教师巡视了解学生情况。

  2.学生汇报。

  3、师在屏幕上演示,加深圆环的空间观念。

  在大圆里画一个同心的小圆,用剪刀沿着小圆的周长把小圆剪掉,剩下的图形就是一个圆环。

  3、圆环各部分的名称。课件出示。

  二:探究新知

  1、出示例2

  2、小组探究圆环面积的计算方法。

  学习要求:

  (1)讨论如何计算圆环的面积:

  圆环的面积=()-()

  (2)列式计算。

  (3)探究圆环面积的字母公式。

  S圆环=()-()

  3、学生小组合作探究,师巡视,个别指导。

  4、学生汇报结果,师公布正确答案。

  5、追问:还有没有其它的计算方法。

  S圆环=∏(R2-r2)

  三、分层练习

  1、通过刚才的探究同学们想一想,要算圆环的面积必须要知道哪些条件?(大小圆的半径)

  2、学生齐读:S=∏R2-∏r2或S=∏(R2-r2)

  3、同学们掌握圆环面积的计算方法了吗?现在我要检验大家是不是真的掌握了,基础训练题。(课件出示练习题)

  (1)生看题独立解决,师巡视辅导。

  (2)生汇报。

  4、变式训练1(课件出示练习题)

  (1)先让学生思考:半圆环面积和圆环面积有什么关系?(是圆环面积的一半)所以只要先把什么面积求出来?在怎样就可以求出半圆环面积?

  (2)生独立解答,师个别指导。

  (3)生汇报交流。

  5、变式训练2

  (1)出示练习题。

  (2)生独立解答,师个别指导。

  (3)生汇报交流。

  师追问:如果不知道大园、小圆的半径怎么求圆环的面积?(先求出大圆、小圆的半径再用公式。)

  三、总结:通过本节课的学习,你有什么收获?

  四、作业:练习十五第5----7题。

  数学面积的教学设计 篇11

  教学内容

  苏教版义务教育小学数学第六册(修订本)第85~88页。

  教学目标

  1.使学生理解面积的含义,认识常用的面积单位,并知道它们的实际大小。

  2.培养观察能力和操作能力,发展初步的空间观念。

  3.感受数学与生活的密切联系,培养学习数学的热情和独立思考、乐于交流的习惯。

  教学准备

  教具:多媒体课件,1平方米桌布一块,米尺,镜框,长方形纸若干张。

  学具:边长1厘米、1分米的正方形纸片若干张。

  教学过程

  一、创设情境

  出示一个木条钉成的长方形镜框,提问:你知道用什么方法计算做这个镜框需要多长的木条?学生回答后紧接着问:如果配一块玻璃,要多大呢?引出课题前半部分。(板书:面积)

  [评析:以学生熟悉的生活情景作为教学的切入点,亲切自然。渗透知识源于生活又应用于生活的数学思想,激起学生学习新知的强烈愿望。]

  二、引导探索,讨论研究

  1.认识面积的含义。

  (1)认识物体表面的面积。

  先举几个生活中物体表面的例子,然后让学生亲手摸一摸课本封面、文具盒盖的表面,并比较它们的大小。

  谈话:我们把课本封面的大小叫做课本封面的面积。谁能说一说什么是文具盒盖的面积?你还能说出哪些物体表面的面积?请比较它们的大小。

  (2)认识围成的平面图形的面积。

  让学生想像把课本面的形状画下来是什么形状,引出并板书:平面图形。让学生回忆学过的平面图形后出示以下图形。

  提问;在屏幕上呈现的6个图形中,你能指出哪些图形的面积?学生回答后追问:为什么不能指出角的面积?

  出示下面3个图形:

  提问:谁能比较这3个平面图形面积的大小?

  [评析:《数学课程标准(实验稿)》在第一学段“空间与图形”的内容标准中提出“结合实例认识积的含义”,按照这一要求,这里不再概括面积的定义,而是让学生具体地感知面积的.含义。学生多种感官积极参与,感知比较充分。]

  2.教学面积单位。

  (1)引入面积单位。

  (教师发给学生每人一张长方形纸,同桌的两张纸宽度相同,长度略有差别。)让学生拿出长方形纸和老师手中的纸比较面积大小,学生一眼就能看出大小。再让同桌之间比较纸的面积的大小,学生发现一眼不能看出来,可能想到用重叠法或量长和宽的办法比较。

  多媒体出示长方形(15个单位)和正方形(16个单位),让学生说说如何比较其大小。演示用重叠的方法无法比较(一个较宽,一个较长)。

  多媒体演示把长方形、正方形分成如图(1)、图(2)的方格。

  学生用数格子的方法说出正方形的面积大。

  多媒体出示图(3)。

  提问:图(3)也画成16个格子,和图(2)的面积一样大吗?为什么?

  讲述:如果用数方格的方法比较面积的大小,要统一标准。这个标准就是面积单位。(板书课题的后半部分:面积单位)

  [评析:在操作和比较中引出积单位,过渡自然,环环相扣,学生始终处于最佳思维状态,每个学生都感觉“这是我自己发现的知识”,有积极的学习体验。]

  (2)认识常用的面积单位。

  ①认识1平方厘米。

  学生观察1平方厘米纸片的形状、大小,量边长。引出:边长1厘米的正方形面积是1平方厘米。(板书:平方厘米)

  提问:生活中哪些物体表面的面积接近1平方厘米?

  ②认识1平方分米。让学生用1平方厘米的纸片量课桌,使学生感觉到要用大一点的面积单位去量。引出并板书:平方分米。

  提问:你认为边长是多少的正方形面积是1平方分米?拿出这样的正方形看一看、摸一摸。想一想生活中哪些物体的面的面积接近1平方分米。最后4人小组合作用1平方分米的纸片量课桌的面积。

  ③认识1平方米。

  提问:如果用1平方分米的纸片量教室地面的面积好小好?你认为再大一点的面积单位是什么?你能说出它的大小吗?(板书:平方米)出小1平方米的桌布,让学生观察,再沿桌布边在地面上围出1平方米的正方形,让一部分学生站在里面,看能站多少人。

  ④小结回顾。

  我们认识了3个面积单位,把它们从大到小排排队,然后闭起眼睛想一想它们各有多大。

  [评析:这一层次的教学重视动手操作和合作交流。在认识1平方厘米后,让学生说出更大的面积单位,培养了学生的想像能力,有效地发展了学生的空间观念。]

  三、组织练习

  1.课本练习。

  (1)选择合适的面积单位。

  ①橡皮表面的面积约是8()

  ②办公室地面的面积约是48()

  ③杂志封面的面积约是6()

  A.平方米B.平方厘米C.平方分米

  (2)估一估,填一填。

  一块手帕面积约()平方分米。

  矿泉水盖面积大约()平方厘米。

  黑板的面积大约()平万米。

  (3)判断下列说法是否正确。(用手势表示)

  ①小红家各厅的面积是30米。

  ②数学课本长2平方分米。

  ③小朋友的大拇指盖的面积大约是1平方厘米。

  2.拓展练习。

  (1)做课本第88页“练一练”第2题。

  学生独立思考后,指名口答,说出是怎样比较的。

  (2)做课本第88页“练一练”第3题。

  人人动手操作,然后在小组内交流。

  (3)做练习十七第2题。

  先动手拼图,再指名回答问题。

  (4)做练习十七第3题。

  先各自动手画图,冉同桌互相检查。

  (5)做练习十七第4题。

  各自动手摆图形。

  在班内展示有关长方形的不同摆法。

  四、总结评价

  今天学习了哪些知识?你有什么收获?还有什么疑问?

  数学面积的教学设计 篇12

  教学目标

  1.知识与技能

  ⑴使学生能根据具体条件,比较灵活地计算圆的面积。

  ⑵使学生认识圆环,学会求圆环面积的计算方法。

  2.过程与方法

  培养学生主动探究、合作交流、解决问题的方法和能力。

  3.情感态度与价值观

  培养学生应用圆的周长公式和面积公式解决一些与生活相关的实际问题,进一步认识图形和生活的联系,感受平面图形的学习价值。提高数学学习的兴趣和学好数学的自信心。

  教学重点、难点

  求圆环面积的计算方法。

  教学过程

  一、情景启发,明确目标

  1.展示20xx年5月21日日环食视频(附件:日环食视频)。引出课题:圆环面积

  简单介绍圆环的形成。

  2.课件展示:生活中的圆环,感受生活美。

  3.复习:圆的面积怎样计算呢?

  (1)、已知圆的半径为2cm,求圆的面积。

  (2)、已知圆的直径为6cm,求圆的面积。

  4.简单介绍圆环的相关名称及关系:

  5.请找出下面圆环的内圆半径(r)或外圆半径(R):

  二、合作探究,达成目标

  大家动笔算一算。

  光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

  圆环面积=外圆面-内圆面积

  3.14×62 - 3.14×22 3.14×(62 – 22)

  = 3.14×36 - 3.14×4 = 3.14×(36 – 4)

  = 113.04 – 12.56 = 3.14×32

  = 100.48(cm2)= 100.48(cm2)

  答:它的面积是100.48cm2.

  比较、分享。求环形的面积,你喜欢那种方法?

  S环=πR2-πr2 S环=π(R2-r2)

  三、变式练习,检测目标

  1.填空:

  2.一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其它地方是草坪。草坪的占地面积是多少?

  3.14×(50÷2)2-3.14×(10÷2)2

  =3.14×252-3.14×52

  =3.14×625-3.14×25

  =1962.5-78.5 3.14×[(50÷2)2-(10÷2)2]

  =1884(m2)= 3.14×[252-52]

  = 3.14×[625-25]

  = 3.14×600

  =1884(m2)

  答:草坪的占地面积是1884m2.

  3.某公园内有一座圆形喷水池,它的半径是3m。现在要在喷水池周围铺上1m宽的甬路。甬路的占地面积是多少m2?

  外圆半径:1+3=4(m)

  环形面积:3.14×(4-3)

  =3.14×(16-9)

  =3.14×7

  =21.98(m)

  答:甬路的占地面积是21.98m2.

  4.环形的外圆周长是18.84cm,内圆直径是4cm,求环形的面积

  3.14×[(18.84÷3.14÷2)2-(4÷2)2]

  =3.14×[32-22]

  =3.14×[9—4]

  =3.14×5

  =15.7(cm2)

  答:环形的面积是15.7cm2。

  四、评讲总结,升华目标

  这节课你学习了什么内容?你有哪些收获?让生说说。师用课件再现一次。

  1、什么样的图形是圆环。

  2、怎样计算圆环的面积。

  五、课堂达标:解决问题

  1.土楼是福建、广东等地区的一种建筑形式,被列为“世界物质文化名录”,土楼的外围形状有圆形、方形椭圆形等。圭峰楼和德逊楼是福建省南靖县两座地面是圆环形的土楼,圭峰楼外直径是32m,内直径是12m。土楼的房屋占地面积是多少m2?

  2.天安门广场前面有一个大型喷泉,喷泉的半径为3m。国庆节快要到了,园艺师傅们在喷泉的周围摆放了4m宽的鲜花。(1)鲜花所占面积有多大?(2)如果每平方米摆放鲜花需要50元,那么摆放这些鲜花至少需要多少元

  外圆半径:4+3=7(m)

  环形面积:3.14×(7-3)

  =3.14×(49-9)

  =3.14×40

  =125.6(m)

  答:鲜花所占的面积有125.6m 。

  3.拓展延伸:求下列图形的阴影部分面积。(单位:cm)

  (1)、大半圆的面积

  3.14×[(2+4)÷2]2÷2

  =3.14×9÷2

  =14.13(cm2)

  (3)、小半圆的面积

  3.14×(2÷2)2÷2

  =3.14×1÷2

  =1.57(cm2)

  答:阴影的'面积是6.28cm2.

  六、布置作业

  1、右图是一块玉璧,外直径是18cm,内直径是7cm.这块玉璧的面积是多少?

  2、右图中的大圆半径等于小圆的直径,请你求出阴影部分的面积。

  3、计算下图涂色部分的面积。(单位:厘米)

  七、课后反思

  1.本课时的教学从学生熟悉的事例出发,创设情景,使学生基本掌握了本课的知识点,并培养了学生的民主、合作精神。

  2.在整节课中,自己也明白了:教师是主导,学生是主体。充分调动学生的积极性,让学生积极参与;鼓励学生在探索的过程中,用自己喜欢的方法解决简单的实际问题;让学生体验解决问题策略的多样性,培养并发展了学生的观察能力、创新精神。

  数学面积的教学设计 篇13

  教学目标

  1、结合具体实例和画图活动,认识图形面积的含义。

  2、经历比较两个图形的面积大小的过程,体验比较策略的多样性。

  教学重点

  认识图形面积的大小。

  教学难点

  理解图形面积的含义。

  教具准备

  两个正方形纸,一大一小。

  教学过程

  一、激发兴趣,认识物体表面

  1.摸一摸

  同学们,拿出你们的双手,摸一下你们的课本和桌子的表面。

  2.比一比

  你们说,课本和桌子这两个面,哪一个面大,哪一个面小?(桌子)

  再来找一找,你们身边有没有比课本的面小的物体?(练习本,铅笔盒……注意要说清楚立体图形的哪个面比哪个面小)

  老师拿了两个正方形,我们来比一比,哪个正方形的面大?这些都是我们靠观察就可以看出来的对不对?(板书:观察比较)

  3.引入

  物体或者是图形的表面可真有意思,他们有大有小。在我们日常生活中,用来说明物体长短的叫什么?(长度),那么你们知道用来说明物体的表面或图形大小的是什么吗?今天我们就来学习一个新知识——面积(板书)

  二、认识面积的含义

  1.定义

  物体的表面或图形的大小就是他们的面积。说一说什么是面积?(个别说,集体说,读定义)

  说一说,你身边的物体,哪里是它们的面积?

  2.比一比

  拿出剪下来的两张纸,先估计一下,你觉得哪个图形的面积大?动手做,小组活动,用什么方法知道面积的大小?

  3.小组汇报

  上台汇报,上来的小组说得出的结果,还有是用什么方法比较出来的(取名称,有割补法,折叠法,数格法……)

  (数格法中,得出在格子相同的情况下,格子多的面积就大)

  三、图案设计比赛

  师:我们来做个比赛好吗?这个比赛叫做“图案设计比赛”,比赛的要求是:设计3个你喜欢的图案,画在书上的方格里,要求它们的'面积都要等于7个方格。(教师观察学生的设计情况,把好的设计展示出来并给予表扬)

  四、练一练

  1.习题1:下面方格中哪个图形面积大?为什么?(虽然形状不一样,但是格子数相同,所以一样大)

  2.说一说哪个图形在面积大,哪个图形在面积小。(用直观的方法可以看出图形面积在大小)

  3.说一说每种颜色图形的面积是多少。

  第二个图形同桌间互相交流,说一说是怎么知道的

  4.这两个图案哪个面积大?

  小组讨论,互相说说是怎么知道的,把小组同学中认为说得最好的请上来,告诉大家他的方法。(不规则图形面积的大小,注意不满一格的情况)

  作业设计

  1.你能用小方格摆出更多更新颖,更有趣的图形吗?回去设计给爸爸妈妈看。

  2.五星级对应的练习和“口算”对应的练习。

  数学面积的教学设计 篇14

  新知识点:

  1、理解面积的含义。

  2、掌握常用的面积单位。

  3、会计算长方形、正方形的面积,掌握面积单位间的进率。

  教学要求:

  1、结合实例使学生理解面积的含义,能用自选单位估计和测量图形的面积。

  2、体会统一面积单位的重要性,认识面积单位:平方厘米、平方分米、平方米和平方千米,建立1平方米、1平方分米、1平方厘米的表象。

  3、熟悉相邻两个单位之间的进率,会进行简单的单位换算。

  4、使学生探究并掌握长方形、正方形的`面积公式,获得探究学习的经历;会使用公式正确计算长方形、正方形的面积,能估计所给的长方形、正方形的面积。

  教学建议:

  1、丰富学生的直接经验,加强直观教学。

  在本单元的教学中,应增加动手操作活动,让学生通过手、口、眼、耳多种感官的协同活动,特别是通过动手操作,掌握相关知识,有利于丰富学生的感性认识,有效地提高知识摄取的效果。在本单元的教学中,还应注意选择各种直观手段的优势,根据教学内容恰当选择教具或课件,从中让学生对所学内容有更真实的感受,获得实实在在的直接经验,更有利于表象的形成。

  2、变机械的学习为有意义的学习。

  机械的学习往往体现在概念教学中,机械的学习是指学生不仅能记住数学概念的描述、符号,却不理解它们的内在含义,不理解有关概念的联系,更不会灵活地运用。有意义的学习是指学生不仅能记住概念的描述或符号,而且能理解它们的内在含义,了解相关数学概念的实质性联系,并能综合运用所学知识解决问题。例如教学“面积单位”可以从三个方面促进学生理解概念:一是初步感知为什么选用正方形作为面积单位的形状;二是指导每个面积单位是怎样规定的;三是了解面积单位与相应长度单位的内在联系。

  3、让学生主动探究,获取结论。在本单元中,有些内容探究的难度不大,结论不叫容易发现,而且便于展开直观操作,因此是小学数学中比较适宜让学生探究的课题,教师应当充分发挥教学内容的特点,组织学生开展探究学习。

  4、重视培养学生的估算能力。

  估算在实际生活中有着广泛的应用,因此本单元的教材对面积的估算给予较多的关注,不仅在“做一做”中有所体现,在练习中也有较多反映,如很多计算面积的练习,都要求学生先估计,再测量计算出面积。所以重视估测能力的培养,也有助于提高学生解决实际问题的能力。

  数学面积的教学设计 篇15

  教学内容:九年义务教育人教版六年制小学课本第九册64页及例1

  教学要求:

  1、使学生理解平行四边形面积计算公式的来源,初步掌握并学会运用面积公式。

  2、培养学生动手操作能力,发展空间思维能力;培养学生的大胆创新意识和小组间的团结协作精神。

  教学重、难点:理解面积公式的推导过程。

  教学准备:几个相同的平行四边形、投影、课件、剪刀

  教学过程:

  一、故事引入、设计情趣

  拍卖公告

  拍卖:为了大力发展小城镇建设,本镇现有一块地皮欲拍卖,有意者请与新袁镇政府办公室联系。

  新袁镇人民政府

  20xx年11月1日

  问:1、如果你想参加竞拍,那你应该知道哪些条件呢?

  2、如果这块地是个正方形,那求它的面积应该知道那些条件呢?长方形呢?

  3、如果是平行四边形,那应该知道什么呢?(板书:平行四边形面积计算公式)

  二、动手操作、激发兴趣

  (1)、用数方格的方法计算平行四边形面积

  1、 出示一个平行四边形,引导学生按照每个方格代表1平方厘米,让学生说出有多少?(让学生讨论如果不满一格应该怎么办)

  2、 出示一个长方形,再引导学生计算一下,说出结果。

  比较一下:长方形的长、宽、面积分别与平行四边形的底、高、面积有什么关系?

  小结:从上面可以看出,平行四边形的面积也可以用数方格的方法求出来,但数起来比较麻烦,如果是拍卖的那块地你还能数嘛?那想一想,能不能像计算长方形面积那样,找出计算平行四边形面积的计算公式?

  从上面的比较中我们发现了平行四边形的底、高、面积分别与长方形的长、宽、面积之间的关系,那你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?

  (2)、用割补平移法推导平行四边形的面积公式

  3、 让学生拿出准备好的平行四边形进行剪拼(教师巡视)然后指名到前边来演示。

  4、 课件演示平行四边形转化成长方形的过程

  刚才发现同学们把平行四边形转化成长方形时,就是把从平行四边形左三角形直接放在剩下的梯形的右边,拼成长方形,这样好吗?在变边剪下的直角换图形的位置时,怎样按照一定的规律呢?

  (1)、先沿着平行四边形的高剪下左边的`直角三角形。

  (2)、左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。

  (3)、移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。

  (3)、引导学生比较

  5、 这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积有什么变化?为什么?

  6、 这个长方形的宽与原来的平行四边形的底有什么样的关系?

  7、 这个长方形的宽与原来的平行四边形的高有什么样的关系?

  归纳总结:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别与原来的平行四边形的底、高相等。

  (4)、引导学生总结平行四边形面积计算公式

  8、 这个长方形的面积怎么求?(板书:长方形的面积:长*宽)

  9、 那么平行四边形的面积怎么求?

  (5)、教学用字母表示平行四边形的面积公式

  S=a × h (告知S和h的读音)

  说明含有字母的式子里,字母和字母中间的乘号可以记作“。”,写成a·h,也可以省略不写,所以平行四边形面积的计算公式可以写成S=a·h 或S=ah

  (6)、应用总结的面积公式计算平行四边形的面积

  10、 回到课件首页,说一下那块地皮的底和高,引导学生想想根据什么列式?

  11、 完成后让学生看书第65页例1

  12、 测测自己准备的平行四边形量一量它的底和高各是多少厘米?再求出面积。

  三、巩固、练习

  略

  四、作业

  课后练习题

【数学面积的教学设计】相关文章:

《认识面积》教学设计08-17

数学教学设计12-11

《数学》教学设计06-27

三角形的面积教学设计04-02

小学数学教学设计07-07

初中数学教学设计05-13

数学广角教学设计12-18

小学数学的教学设计09-16

数学乐园教学设计04-19