“倒数的认识”教学设计
作为一位杰出的教职工,常常要写一份优秀的教学设计,借助教学设计可以提高教学效率和教学质量。怎样写教学设计才更能起到其作用呢?以下是小编为大家整理的“倒数的认识”教学设计,欢迎阅读,希望大家能够喜欢。
“倒数的认识”教学设计1
教材分析
《倒数的认识》是人教版小学数学六年级上册第二单元中的内容,是学生学习了分数乘法的意义及应用题之后的内容,为学习分数除法的意义及计算法则打基础,分数除法经常要转化成分数乘法进行计算,转化需要倒数的知识。因此,本单元在分数乘法的教学基本完成以后,编排了有关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。
学情分析
学生初看到“倒数”这一概念时,从字面上看也许对它有了一定的了解,所以通过学生自学,自主探索倒数有什么意义,如何求一个数(0除外)倒数的方法,使学生真正理解倒数的含义,在此基础上培养学生观察能力、比较能力与分析概括的能力。
教学目标
1、知道倒数的意义,会求一个数的倒数。
2、经历倒数的意义这一概念的形式过程。
3、培养学生观察、归纳、推理和概括的能力。
4、利用教师的情感特征,激发学生的学习兴趣,让学生体会成功的快乐。
教学重点和难点
理解倒数的意义,会求一个数的倒数。
教学过程
略
教学反思
“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的.倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。这节课上,我采用了探究式的教学方法,正确处理了“教教材”和“用教材”的关系。1.在本课的引入中,我没有采用多种铺垫,而是直接通过让学生计算教材中的四个乘法算式,观察积的特点与算式中两个因数的特点,直接对倒数形成了初步的认识,更明白了只要调换分子与分母的位置就会得到一个新的分数。为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的这一发现,我引导他们很快就总结出了倒数的概念——乘积是1的两个数叫做互为倒数。2.在让学生通过研究求各种数的倒数的方法的环节上,避免了学生在学习中只会求分数的倒数的知识的单一,延伸的所学的内容。在最后,面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数是它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”这个理由,拓展了我所提供给学生的知识内容。如果让我重新上这节课我会设计出更多的形式多样的练习让学生在练习中得到更大的提高。
“倒数的认识”教学设计2
教学目标:
1、是学生通过探究活动,认识倒数的意义,掌握找倒数方法。
2、培养学生观察、归纳、推理和概括的能力。
教学过程
一、创设活动情景,引入概念。
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1.通过观察发现相乘的两个分数的分子和分母的位置是颠倒的)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数就做倒数。
让学生读一读:倒数。
出示倒数的意义:乘积是1的两个数互为倒数。
二、 探究讨论,深入理解。
让学生说说对到数意义的理解。
提问:互为是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述?
因为3/44/3=1,所以四分之三是倒数,三分之四也是倒数。
三、运用概念,探讨方法。
出示例2,找一找那两个数互为倒数?
汇报找的结果,并说一说怎样找到的'?
1,看两个分数的乘积是不是1;
2,看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
分子、分母交换位置
例:3/55∕3 3∕5的倒数是5∕3
(2)找倒数的倒数:先把整数看成分母是1的分数,在交换分子和分母的位置。
分子、分母交换位置
例:6=1∕6 6的倒数是1∕6.
四、出示特例,深入理解
看一看。例2中的那些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
因为11=1,根据乘积是1的两个数互为倒数,所以1的倒数是1. 交换分子、分母的位置
也可以这样推导:1= 1∕1=1,1的倒数是1.
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
交换分子、分母的位置
也可以这样推导:0=0∕11∕0,分母不能为0,所以0没有倒数。
五、巩固练习
1、完成做一做,先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
六、总结
今天学习了什么?
什么叫倒数?怎样找到一个数的倒数?
“倒数的认识”教学设计3
教学目标:
(1)知识目标:通过计算、观察、概括,使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。
(2)能力目标:通过引导学生自主探索学习,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳的能力。培养学生的分析、推理、判断等思维能力,发展学生的思维
(3)情感目标:提高学生学习数学的兴趣,培养学生独立探索精神和合作交流意识,并渗透“事物之间相互联系、相互依存”的辨证思想。
教学重点:倒数的意义和求法,理解倒数的意义,会求不同种类数的倒数。
教学难点:熟练正确的求不同种类数的倒数,发现不同种类数的倒数的一些特征。1、0的倒数,小数的倒数。
教学准备:写有数的纸片。
教学过程:
一、导入新课。
请同学们观察下面两组字:杏–呆,吴–吞。
师提问:你们发现了什么,能说说你们的发现吗?小组内说一说。然后让学生个别说。同学们给予评价。
学生:我们发现这两组字都是由相同的字构成的,都是上下结构。上下两部份交换位置就成了另一个新字。
师说:在数学中,有没有像这样的数字上下两部份交换位置成了另一个新的数,这样的两个数之间有什么联系呢?
学生:有,是分数,上面部份是分子,下面部份是分母。分数的分子和分母交换能成一个新的分数。比如:2/3和3/2、6/5和5/6。
师:这样的两个数我们给它们取个名叫互为倒数。(板书:倒数的认识)
二、新知探究。
(一)小组验证互为倒数的两个数的`特点。
师:那好,我们就进行一个小小的比赛。我给大家30秒的时间,请你写出分子与分母交换了位置的两个数,看谁写得多。
师:你们刚才写的所有算式都有怎样的共同点?
学生:我们写的每组数的分子与分母的位置是调换了的。
师:请第一组用加、第二组用减、第三组和第四组用乘的方法验证刚才2/3和3/2、6/5和5/6,能发现什么规律?(分小组活动)
板书:第一组:3/2+2/3=9/6﹢4/6=13/6
6/5+5/6=36/30+25/30=61/30
第二组:3/2-2/3=9/6-4/6=5/6
6/5-5/6=36/30-25/30=11/30
第三组和第四组:3/2×2/3=16/5×5/6=1
师问:互为倒数的两个数相加、相减、相乘有何特点?
学生:互为倒数的两个数相加的和不相等,互为倒数的两个数相减的差也不相等,互为倒数的两个数相乘的结果都是1。
师:互为倒数的两个数的乘积是1,乘积是1的两个数互为倒数。(板书:倒数的概念)
指出:互为倒数的两个数分子分母互相颠倒,这样的两个数的乘积一定是1。比如:2/3和3/2互为倒数,2/3的倒数是3/2,3/2的倒数是2/3;6/5和5/6互为倒数……
2、试下面数的倒数。
2的倒数是0。2的倒数是0。25的倒数是
让学生说一说怎样求一个数的倒数,用什么方法能快速求出来?(引导学生把小数化成分数:0。2=1/5,想:0。2=1/5,1/5的倒数是5,所以0。2的倒数是5。0。25=1/4……然后再求它们的倒数)让尽可能多的学生说说它们是怎么互为倒数的。
明确:互为倒数的两个的分子分母互相颠倒,这样的两个数的乘积一定是1。
(二)课堂练习:求一个数的倒数。
1、质疑:互为倒数的两个数有什么特征?谁能举例说明什么是互为倒数。
2、师:完成教材P45“填一填”
5/87/462/310.8(补充)
让学生与同桌说一说自己的想法,知道求小数的倒数需先把小数化成分数。
3、讨论:0有倒数吗?学生交流。
板书:0和任何数相乘都不能得到1,所以0没有倒数。
4、完成P47课堂活动的对口令。
汇报时让学生说一说谁是谁的倒数。
(小结:刚才我们就学习了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
5、出示判断:
(1)得数为1的两个数互为倒数。()
(2)因为9/4×4/9=1,所以9/4和4/9都是倒数。()
(3)互为倒数的两个数乘积一定是1。()
(4)因为1/3+2/3=1,所以1/3和2/3互为倒数。( )
(5)a是1/a的倒数,1/a是a的倒数。()
(6)a/b是b/a的倒数,b/a是a/b的倒数。()
6、探索求真分数和假分数的倒数的特点。
学生分小组讨论,把讨论的结果记录在本子上,然后小组让代表汇报。
师生共同小结:真分数的倒数一定是假分数。假分数(1除外)的倒数一定是真分数。
“倒数的认识”教学设计4
教材分析
倒数是北师大版五年级数学下册的内容,这部分内容实在分数乘法计算的基础上进行教学的,通过观察乘积是1的几组数的特点,引导学生认识到数,为后面学习分数除法做准备,它是分数计算的关键,他沟通了分数乘法和除法的计算,骑着承前启后的作用。
学情分析
倒数这一节内容对学生来说非常陌生,以前从没有接触过,但是这节内容,对于五年级的学生来说非常简单,以为经过四年的学习,他们已经具备了分析问题和解决问题的能力,会很容易学会的。
教学目标:
1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、进一步培养学生的自主学习能力,提高学生观察、比较、概括以及合作学习的能力。
3、提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:
概括倒数的意义与求法。
教学难点:
理解“互为”、“倒数”的含义。
教学过程:
一、谈话引入
师:同学们,当美国人碰到好朋友的时候,会热情拥抱,那我们中国人一般会怎样做呢?
生:握手
师:现在谁愿意来前面和老师握握手?他就会成为老师最好的朋友。
(师生共同表演握手的`动作)
师:握手是几个人的事情呢?
生:两个人
师:通过今天的相处,我们互相成了朋友。谁能告诉大家,你是怎样理解“互相成了朋友”这句话的?
生:“互相成了朋友”就是说我们是老师的朋友,老师也是我们的朋友。
师:同学们,前面我们学习了分数的乘法,今天老师给出一些乘法算式,比一比谁能最先发现这组算式的秘密。(拿出作业本帮助你)
二、引导探究,掌握方法。
1、举例观察,讨论。(2/5的倒数)
师:怎样求一个数的倒数呢?
生:分子分母交换位置。
师生共同总结:一个分数的倒数就是把这个分数的分子分母交换位置。
2、小组讨论,探究求整数的倒数的方法。
师:2的倒数怎么求呢?
生:把2看成分母为1的分数,即2=2/1,所以2的倒数是1/2。
(师生共同总结:整数的倒数是用1做分子,用这个整数做分母。)
三、巩固练习,拓展外延。
1、出示“1/5,3/4,5/9,1,3/7,9/5,4/3,7/3”八个数,请学生移动数的位置,找出几组互为倒数的数。
2、剩下“1/5和1”,分别求出1/5的倒数和1的倒数。
3、1的倒数是几?(1的倒数是1。)你是怎样计算的?
(1)整数的倒数是用1做分子,用这个整数做分母。所以1的倒数为1。
(2)因为1×1=1,所以1的倒数为1。
4、0也是整数,0的倒数是几呢?
(1)出示0×()=1。谁上来填一填?(没人举手)
师:0乘任何数都不得1,这说明了什么?
生:0没有倒数。
(2)如果把0看成分母为1的分数,即为0/1,那么它的倒数应是1/0。
师:这样说可以吗?
生:不可以,因为0不以做分母。
5、真分数的倒数是假分数,假分数的倒数是真分数。那么带分数呢?
(先把带分数化成假分数,再求它的倒数。)
6、小数有倒数吗?
(1)把小数化成分数,再求它的倒数。
(2)举例说明:因0.25×4=1,所以说0.25和4互为倒数。
四、深化练习,巩固提高。
1、填空。
(1)乘积是()的两个数互为倒数。
(2)()的倒数是它本身,()没有倒数。
(3)27/100的倒数是(),25/16的倒数是()。
(4)0.7的倒数是()。
六、全课小结。
同学们,今天这节课你有什么收获?
板书设计
倒数
乘积是1的两个数互为倒数。
求一个数(0除外)的倒数,就是将分子、分母交换位置。
1的倒数是1;0没有倒数。
“倒数的认识”教学设计5
设计说明
“倒数的认识”是在学生学习了分数乘法的基础上进行教学的,它既是分数乘法计算的后继内容,又是学习分数除法的基础,起着承上启下的作用。这部分知识主要 包含两部分内容:一是倒数的意义;二是求一个数的倒数的方法。基于以上的教学作用和内容,本节课的`教学设计如下:
1.游戏激趣,迁移揭题。上课伊始,通过 反义词知识,帮助学生理解“互为”的意义,为构建新知扫清语言理解上的障碍,然后通过知识迁移,自然地导入倒数知识的学习。
2.发现、讨论、探究新知。教 师以组织者、引导者、合作者的身份,让学生主动参与到整个学习的过程中,为学生提供发现、讨论的机会。先让学生观察乘积是1的算式,引出倒数的意义,再根 据倒数的意义求一个数的倒数。
学习目标
1.使学生理解倒数的意义,掌握求一个数的倒数的方法。
2.培养学生观察、归纳、推理和概括的能力。 3.培养学生严谨好学的学习态度。
学习重点
理解倒数的意义。
学习难点
掌握求倒数的方法。
教学过程
一、激趣导入。(7分钟)
引导学生理解“互为”的意义。根据每组字的规律填数。3.导入新课,板书课题。
仔细观察每组分数的分子和分母,它们之间有哪些关系?这节课我们就根据这样的位置关系来学习新知识——倒数的认识。
二、探究交流解决问题。(20分钟)
1.明确倒数的意义。
先计算,再观察,看看有什么规律。
(1)引导学生认真计算并思考,发现规律。
(2)交流发现的问题。
(3)教师说明这样的两个数就互为倒数,并引导学生总结这几组算式的共同特点,尝试描述倒数。
(4)明确倒数的意义。(板书)
(5)指名举例说出什么是倒数。
2.探究求倒数的方法。
课件出示教材28页例1。
(1)学生独立解答。
(2)指导学生分小组讨论:怎样才能快速地找到一个数的倒数?
(3)组织学生讨论:1的倒数是多少?0有倒数吗?
(4)师生共同总结求倒数的方法。
三、巩固练习,应用反馈。(10分钟)
1.写出下面各数的倒数。
2.游戏:互说倒数。
组织学生进行分组游戏,两人一组,一名学生说出一个数,另外一名学生快速说出它的倒数。
四、课堂总结。(4分钟)
1.教师总结本节课的学习内容。
2.布置课后学习内容。
“倒数的认识”教学设计6
教学重点:认识倒数并掌握求倒数的方法
教学难点:小数与整数求倒数的方法
教学过程:
一、基本训练
口算:
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
1、乘积是1的两个数存在着怎样的'倒数关系呢?
请看:,那么我们就说是的倒数,反过来(引导学生说)
是的倒数,也就是说和互为倒数。
和存在怎样的倒数关系呢?2和呢?
2.深化理解
提问:①什么是互为倒数?
怎样理解这句话?(举例说明)
(的倒数是,的倒数是,......不能说是倒数,要说它是谁的倒数。)
②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,,......但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。
3.求一个数的倒数
教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。
①出示例题
例:写出、的倒数
学生试做讨论后,教师将过程板书如下:
所以的倒数是,的倒数是。
(能不能写成,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
②深化
你会求小数的倒数吗?(学生试做)
“倒数的认识”教学设计7
教学内容:
人教版六年制小学数学课本第十一册《倒数的认识》。
教学目标:
1、智力目标:使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。
2、非智力目标:培养学生举例、观察、比较、抽象概括能力;通过自主学习获得成功的体验,提高学习数学的兴趣。
教学想法:
去年的毕业班,我在课堂教学进行“导师式”课堂教学模式的实践,把实践的感受撰写的论文获得长沙市论文评比一等奖。今年的毕业班,我尝试“三段式目标自主学习法”(自己瞎捏的名词)。课堂主要环节包括:接触课题,展开目标-----自主学习,到达目标-----反馈内化,延伸目标。总的思路是放手让每一个学生大胆亲近数学,根据自己的能力提出对数学的看法进行积极的学习,宗旨是全面提升学生对数学的态度和学习方法,从而提高课堂的效率。
一、直接导入,展示目标。
1.出示课题:倒数的认识。
看到这个课题你能知道我们这节课的学习任务是什么?(借用三个英语单词做引路词:What? Why ? How?)。
2.是否有哪些经验可以回答一点?(调查学生已有的知识经验和生活经验)
二、研究学习,到达目标。边学边练
1.自学教材5分钟,尝试做一下书本的练习题。教师巡视。
把自己的收获,和你认为最有价值的句子写到黑板上。可以是书本上的,也可以是自己想的。写在课题下面。(鼓励学生板书,培养抽象知识的能力。)
2.概括“倒数”的意义。
下定义:乘积是1的两个数互为倒数。
尝试表达:这些算式里哪两个数互为倒数?P24的几个例子,把机会留给学困生表达。
3.怎样求一个数的倒数?
你能找出与这些数互为倒数的数吗?
4.穿插一个游戏,互说倒数,先叫一个学生上讲台与老师示范再同桌展开活动。
小结方法:谁发现了求一个数的倒数的方法?
特例:0没有倒数?
5.作业指导。求一个数的倒数的过程。
求3/5的倒数,下面是小红和小明的作业本,你赞成谁的`书写?
小红:3/5=5/3
小明:3/5的倒数是5/3。
6.当堂作业:P24的做一做。P25的第4题。做在书上。
三、拓展目标,巩固提高。
1.判断:(对的在括号里打“√”,错的打“×”)
2。开放性填空。(假定法)
四、自主小结,延伸目标。
谈谈自己的收获和学习体会。
教后反思:
1.教学流程顺利。学生的学习过程按照平时训练的自主学习方式推进,每个人根据自身基础寻求不同程度的进步和发展。每个人都在参与,都在思维。
2.体现自己的教学观和学生观。课堂是学生的课堂,备课固然要考虑教材的处理,但更重要的是要考虑学生的感受,考虑学生的学习心理。我设计的教学过程主要围绕学生学习活动推进,让学生自主学习。长期坚持,学生的自学能力能得到很好的培养。
3.五分钟的遗憾。看手表还有五分钟时间,不想铃声却响了。还有一个提高拓展的环节没有完整,给听课者和自己一个残缺感,是个遗憾。没关系,教研是个话题,能通过一节课展示自己的想法和做法,供大家批评、商讨,也是一件好事。
“倒数的认识”教学设计8
教学目标:
1、 使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
2、 培养学生观察、归纳、推理和概括的能力。
教学过程
一、创设活动情景,引入概念
出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
让学生读一读:“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。
二、探究讨论,深入理解
让学生说说对倒数意义的'理解。
提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述。
因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。
三、运用概念,探讨方法
出示例2,找一找哪两个数互为倒数?
汇报找的结果,并说说怎样找的?
1、 看两个分数的乘积是不是1;
2、 看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
(1)找分数的倒数:交换分子与分母的位置。
例:
(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
例:
四、出示特例,深入理解
看一看,例2中的哪些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、 关于1的倒数。
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
也可以这样推导:
1的倒数是1。
2、 关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
也可以这样推导:
分母不能为0,所以0没有倒数。
五、巩固练习
1、 完成“做一做”。先独立做,再全班交流。
2、 练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、 同桌进行互说倒数活动(练习六第2题)。
六、总结
今天学习了什么?
什么叫倒数?怎样找出一个数的倒数?
“倒数的认识”教学设计9
学习内容:人教版义务教育教科书数学六年级上册P28—29
学习目标:
(1)理解倒数的意义及倒数的特点,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)采用自主探究与合作交流的方法,进一步培养学生的自主学习能力,提高学生观察、比较、归纳、概括以及合作学习的能力。
(3)通过亲身参与探究活动,体验数学学习的乐趣,激发积极的学习情感,培养学生学会与人合作,愿与人交流的习惯。
学习重点:倒数的意义、特点和求倒数的方法。
学习难点:1和0的倒数的.求法。
学习过程:
一、创设情境,激趣导学。
1.出示算式,找特征。
先计算,再观察,看看有什么规律。
×=1×=15×=1×12=1
问:“你发现了什么?”
2.引出倒数的定义。让学生看书。
3.揭题:今天我们就来学习“倒数的意义”(板书课题)。
二、独学质疑,合作探究。
1.初步理解
我们知道×=1,那么我们可以说:“因为×=1所以和互为倒数”
这句话还可以怎么说?的倒数是,的倒数是。
你能照样子,结合黑板上的例题,说说算式中两数之间的关系吗?
2.判断,加深理解
(1)判断正误,并说明理由。
a.和7都是倒数。(关注到了倒数的概念中关键的词语“互为”)
b.+=1,所以和互为倒数。(关注了倒数概念中关键的词语“乘积是1。”)
c.××=1,所以、、互为倒数。(关注了倒数中的关键词“两个数”)
小结:对于概念的学习,应该充分关注概念中的关键词语。
(2)请任意写出三个数的倒数,要求,写完整:谁的倒数是谁?
三、点拨互动,应用提升。
1.出示例2,找一找哪两个数互为倒数?
2.学生汇报找的结果,并说说怎样找的?
(1)看两个数的乘积是不是1。
(2)看两个数的分子与分母是否交换了位置。
3.根据寻找出的结果,探究倒数的特点。
4.这两种方法,哪一种比较快?
5.设问:1和0有没有倒数?如果有,是多少?
(1)分组讨论。(2)学生汇报。
四、检测诊断,总结评价。
1.基本练习:完成教科书P28的做一做,然后集体订正。
2.加深练习:倒数一定比它本身要小吗?探究什么数的倒数比它本身要大,什么数的倒数比它本身要小。
“倒数的认识”教学设计10
教材分析:
教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:知道倒数的意义和会求一个数的倒数
教学难点:1、0的倒数的求法。
教具准备:课件
教学过程:
一、课前谈话:
师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。
生:好!
师:那你想怎样表述我们的关系?
生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。
二、揭示倒数的意义
师:前面我们学习了分数乘法,请同学们计算几道题。 师:观察它们有什么共同的特点? 生:乘积都是1!??
师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
生:(齐)能!
师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。
准备好了吗?开始??
师:时间到,停!谁愿意把你写的念出来,和大家共同分享?
(生读,师有选择的板书在黑板上。 )
师:这么短的时间内就能写出这么多乘积是1的两个数,不错。
师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?
生:无数个
出示例7
师:那请你们来帮帮忙,找出乘积是1的两个数。
(学生个别回答)
师:你们找的这些与之前写的所有算式都有怎样的共同点?
生:乘积都是1。
师:你知道吗?揭示意义】 教师板书:乘积是1的两个数叫做互为倒数。生齐读。
师:黑板上所写的两个数的积都是1 ,所以他们互为倒数。比如3/8和8/3的乘积是1 ,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数) 【示范说】
师:3/8和8/3互为倒数!我们还可以怎么说呢。
生:3/8的倒数是8/3;8/3的倒数是3/8。
师:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?
生1:“互为”是指两个数的关系。
生2:“互为”说明这两个数的关系是相互依存的。
师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?
师:2/5和5/2的积是1,我们就说??(生齐说)
师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。
(学生活动)
(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)
探索求一个倒数的方法
师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。
生1:互为倒数的两个数分子和分母调换了位置。
师:同意吗?
生:同意。
师:根据这一特点你能写出一个数的倒数吗?
生:能
师:试一试!
师在黑板上出示3/5 7/2 ,写出它们的倒数。
师:那5(0.1)的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?
生:把5看成是分母是1的分数,再把分子分母调换位置。
求小数的倒数的方法:小数 求带分数的倒数的方法:带分数
三、 分数倒数。 倒数。 假分数
师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)
0的倒数呢?
师:为什么?
生1:因为0和任何数相乘都得0,不可能得1。
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。
生1:求一个数的倒数,只要把分子分母调换位置。
生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。
生3:1 的倒数是1,0没有倒数。
(生齐读求一个数倒数的方法。 )
四、巩固练习
1、打开书,阅读课本P34,把你认为重要的划起来。
2、完成练一练。
(1)学生在书上完成,教师巡视,请同学板演。注意学生的`书写格式是否正确。
(2)发现一学生书写有误,与该生交流。
(3)用展台展示该生的错误。
师:这样写可以吗?(4/11=11/4)
生:不可以!
师:为什么?
生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。
(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。
3、小游戏:同桌互相出一题,对方说出答案。
4、先说说下面每组数的倒数,再看看你能发现什么?
(1)3/4的倒数是( ) (2)9/7的倒数是( )
2/5的倒数是( )10/3的倒数是( )
4/7的倒数是( ) 6/5的倒数是( )
(3)1/3的倒数是( ) (4)3的倒数是( )
1/10的倒数是( )9的倒数是( )
1/13的倒数是( )14的倒数是( )
由学生说出各数的倒数。然后
师:请你仔细观察,看能从中发现什么,发现得越多越好。
师:小组间可以先互相说一说。
汇报:
生1:我从第一组中发现真分数的倒数都是假分数。
生2:我从第二组中发现假分数的倒数是真分数或者假分数。
生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。 生4:我发现分子是1的分数。
4、填空:
7×( )=15/2×( )=( )×3又2/3=0.17×( )=1
五、课堂小结
1、小结:今天我们学习了什么???
2、学了倒数有什么用呢?
大家课后可去思考一下。
板书设计
倒数的认识
乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。
0.1的倒数10 5的倒数是5 1又1/8的倒数是8/9 。
(0.1=1/10) (5=5/1) (1又1/8=9/8)
求小数的倒数的方法: 求带分数的倒数的方法:带分数
分数假分数 倒数。 倒数。
“倒数的认识”教学设计11
教学目的:
1.使学生感知倒数的意义,掌握求倒数的方法,学会对倒数的正确表述。
2.培养学生的观察能力、数学语言表达能力、发现规律的能力等。
教学重点:求一个数的倒数的方法。
教学难点:理解倒数的意义,掌握求一个数的倒数的方法。
教学准备:教学光盘
课前研究:自学课本P50:
(1)什么是倒数?倒数的概念中哪几个字比较重要?说一说你是怎么理解的。
(2)观察互为倒数的两个数,说说他们分子、分母的位置发生了什么变化?
(3)0有倒数吗?为什么?
教学过程:
一、作业错例分析。
二、学习分数的倒数:
1.出示例7
学生在自备本上完成,指名核对。
教师板书: ×=1× =1× =1
2.你能模仿着再举几个例子吗?
学生回答,教师板书。
3.观察板书,揭示倒数意义:乘积是1的两个数互为倒数。(板书)
和 互为倒数,也可以说的倒数是 ,的倒数是。
让学生模仿着说另外两个算式,谁和谁互为倒数?谁是谁的倒数?
4.你能分别找出和的倒数吗?
学生同桌讨论找法,指名交流。
5.观察上面互为倒数的两个数,学生讨论怎样求一个分数的倒数?
指名交流方法:求一个分数的倒数时,只要把它的分子、分母调换位置就可以了。
6.合作练习:同桌两位同学一位说出一个分数,请另一位同学说这个分数的倒数,并交换练习。
三、学习整数的倒数:
1.电脑出示:5的倒数是多少?1的倒数呢?
学生跟自己的同桌说一说,再指名交流。
方法一:求5的倒数时,可以先把5看作,所以它的倒数是;
方法二:想5×( )=1,再得出结果。
2.那1的倒数是多少?(1)
3.0有倒数吗?为什么?(没有一个数与零相乘的积是1,所以0没有倒数)
4. 分数和整数(0除外)都有它的倒数,小数有没有倒数?你能发表自己的观点吗?
0.25 0.1 的倒数是多少?如何求的?
5.练一练 示范写 的.倒数: 的倒数是 ,明确不能写成 =。
学生独立完成,集体核对。
四、巩固练习:
1.练习十第1题
学生独立完成后集体订正,说说思路及倒数的意义和求倒数的方法
2.练习十第2题
学生先独立找一找,再交流想法,注意说完整话。例:与4互为倒数。
3.练习十第3题
学生独立填空后集体订正。
4.练习十第4题
写出每组数的倒数。说说有什么发现?
第1组中都是真分数,倒数都是大于1的假分数。
第2组中都是大于1的假分数,倒数都是真分数。
第3组中都是一个分数的分数单位,倒数都是整数。
第4组中都是非0的自然数,倒数都是几分之一。
5.练习十第5题:
学生独立完成。说说怎样求正方体的表面积和体积。
6.练习十第6题
学生独立列式解答后,辨析。
两题中分数的不同意义:
第一题中的表示两个数量间的倍比关系,要用乘法计算。
第二题中的表示用去的吨数,求还剩多少吨,要用减法计算。
7.思考题
学生小组讨论,指名交流。
按钢管的长度分三种情况考虑:
(1)如果钢管的长度都是1米,那么两根钢管用去的一样多;
(2)如果钢管的长度小于1米,那么第一根用去的长度长一些;
(3)如果钢管的长度大于1米,那么第二根用去的长度长一些。
五、课堂总结:
今天我们学习了两个数之间的一种新的关系——倒数关系,谁再来说一说倒数是怎样定义的?怎样求一个数的倒数?1的倒数是多少?0有没有倒数?
“倒数的认识”教学设计12
教学内容:教科书第24页例1、例2及“做一做”。
教学目标:
1.使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。
2.培养学生观察、归纳、推理和概括的能力。
教学过程
一、口算练习,唤醒对1的探究热情
A①×=②×=③×32=④×=
⑤×=⑥62×=⑦×=⑧×=
⑨×=⑩×=
B①×1=②×1=③×1=④×1=
⑤×1=⑥1×=⑦1×=⑧1×=
⑨1×=⑩1×=
C①÷1=②÷1=③÷1=④÷1=
⑤÷1=⑥÷1=⑦÷1⑧÷1=
⑨÷1=⑩÷1=
(课前,将三组口算练习题分别发给同桌两人,其中把A发给坐在右边的学生,把B、C发给坐在左边的学生))
师:请同学们拿出课前发的口算练习卡,现在我们来进行一个口算比赛,做完后请起立,两分钟时间,现在计时开始。
之后让学生思考为什么做两组的比做一组的还快呀?学生交流后,再屏幕出示口算题让学生找找原因。
师:看来秘诀就在1这个数上。1在运算中有一些特点,任何数乘1还得原数,如果除以1,也是这样。所以这个1,在数学运算中有自己独特的地方。板书:1想一想,谁除以谁会等于1呢?能用最简洁的语言概括一下吗?
二、观察比较,抽象概念
提问:谁乘谁等于1呢?板书:×()=1
在练习本上写几组乘积是1的算式,时间1分钟,看看谁写得多。
交流:把学生的算式分类排列。(整数、分数、小数)
小结:3个臭皮匠赛过诸葛亮,集中大家的智慧,让我们把问题考虑的更全面。
观察:这些等于1的乘法算式,因数有什么特点?
预设:
1、在有分数的算式里,分母和分子都颠倒了。(他用了一个词颠倒,很好的概括了这些因数的特点。这样的两个分数相乘都等于1吗?能不能再举出一些例子来?)真的很有意思,分子分母颠倒过来的两个数相乘等于1.在数学上,知道这样的两个数叫什么吗?(板书:倒数)
2、很形象,分子分母交换了位置,通俗的讲就是倒过来了。那现在谁能简练的概括一下,什么是倒数?(板书:乘积是1的两个数互为倒数。)
理解:
在倒数的`意义中,你觉得哪些词比较重要?为什么?
预设:
①乘积是1,强调了只能是乘法计算的结果,加法、减法、除法的结果是1的两个数就不能说是互为倒数。
②两个数也很重要,它告诉我们不能是3个、4个或更多个数的乘积,只能是两个数的乘积是1.
③互为也很重要,互为是互相的意思,表示两个数之间的一种关系,一个数不能叫倒数。
练习:
现在我们通过几道小练习来检测一下大家是否弄清了倒数的意义。
1、×()=1
2、判断:
①因为×=1,所以是倒数,也是倒数。()
②××=1,所以、、互为倒数。()
③×的乘积为1,所以与互为倒数。()
三、运用概念,探究方法
提出问题:
我们理解了什么是倒数,那给一个数,你会找它的倒数吗?同桌两个人互相出数,然后想一想,怎样求这些数的倒数?
全班交流:
①分数(多找几对同桌先交流结果,再说一说找分数倒数的方法)
②整数(化成分母是1的分数,然后交换分子和分母的位置或用1除以这个数)有研究1的倒数的吗?0呢?
③小数(先化成分数,然后交换分子和分母的位置)
质疑:
有研究带分数的吗?带分数怎样找倒数呢?(举例验证,总结方法。)
四、分层练习,形成能力
1、写出下面各数的倒数。(课本24页做一做)
预设:学生可能会出现=
2、若m×=1,则m=()。
3、任何真分数的倒数都是()。
A真分数B假分数C不确定的数
4、游戏:找朋友。
①请4个同学到台上,给每人戴上一顶帽子,上面有、、0.5、2各数,本人看不到自己头上的数,但可以看到其他三个人的。
②5个不同的数:、、1、、3,每个数的倒数都在其中。
五、回顾全课,总结提升
今天这节课,你有什么收获?
师:同学们在动脑思考、合作交流中知道了什么是倒数,并知道了求一个数倒数的方法,还发现了两个特殊的数:1的倒数是1,0没有倒数。希望同学们在学习中能坚持善于观察、勤于动脑的好习惯,探索更多的数学知识。
“倒数的认识”教学设计13
一、教学内容:
课本28页例1及相应的做一做、练习六的题目 。
二、教学目标
1、知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
3、情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
三、教学重难点
重点:认识倒数并掌握求倒数的方法。
难点:小数与整数求倒数的方法。
四、教学过程
(一)、创设情景,生成问题
交流我知道咱们班的同学个个都聪明伶俐、头脑反应快,现在老师想和你们比一比你们敢吗?
师:我说一个字或词你们答出它的反义词,看谁答的又快又准。 生答:
师:上、黑、左、强大、 兴高采烈、、、、、
生:抢答。
师:同学们答的又准又快看来是名不虚传,同学们刚才回答的这些字或词它们都是相互依存的是不是,例如没有上也就没有下,没有黑就没有白,实际在生活中经常遇到这样的情况,例如我们在五年级就学过这样的内容,那就是约数和倍数,今天我们在学习一种这样的内容好不好?――出示课题《倒数的认识》
(二)、探索交流,解决问题。
1、学习倒数的意义
出示一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?
小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)
师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。
让学生读一读:“倒数”。
出示倒数的意义:乘积是1的两个数互为倒数。
让学生说说对倒数意义的理解。
提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)
判断下面的句子错在哪里?应该怎样叙述。
因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。
学习例2
找一找哪两个数互为倒数?
汇报找的结果,并说说怎样找的?
1、看两个分数的乘积是不是1;
2、看两个分数的'分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
通过具体实例总结归纳找倒数的方法。
(1)找分数的倒数:交换分子与分母的位置。
(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
看一看,例2中的哪些数据没有找到倒数?(1,0)
提问:1和0有没有倒数?如果有,是多少?
小组讨论、汇报。
1、关于1的倒数。
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。
也可以这样推导:,1的倒数是1。
2、关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。
也可以这样推导:分母不能为0,所以0没有倒数。
(三)、巩固应用,内化提高
1、完成“做一做”。先独立做,再全班交流。
2、练习六第3题。
用多媒体或投影逐题出示,学生判断,并说明理由。
3、同桌进行互说倒数活动(练习六第2题)。
(四)、回顾整理,反思提升。
师:今天我们学习了倒数的有关知识,请同学们回忆一个,你是怎样学习的
生:提问――自学讨论――汇报――练习
师:你能用“我学会了……”来描述你今天学到的知识吗?
生:我学会了……
(五)、板书设计
《倒数的认识》教后反思
“倒数的认识”是在学生掌握了整数乘法等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。在引入部分,我利用朋友的相互关系及中国文字形象的使学生对倒数有了直观的认识,为了使学生深入了解倒数的意义,我引导学生举了大量分数的例子,并通过观察、计算等方法使学生明确“互为倒数的两个数的乘积是1”、“倒数的两个数只是把分子和分母的位置进行了调换”、更让我高兴的是学生能注意到“倒数是相互依存的”。抓住学生的发现,我引导他们很快就总结出了倒数的概念――乘积是1的两个数叫做互为倒数。
在让学生通过研究求各种数的倒数的方法的环节上,避免了学生在学习中只会求分数的倒数的知识的单一,延伸的所学的内容。在最后,面对特殊的0和1这两个数时,学生们出现了小小的“争执”。有人认为:“0和1有倒数。”有人认为:“0和1没有倒数。”对于学生的“争执”我没有直接介入,而是引导他们互相说说自己的理由,在他们的交流中,学生们达成了一致的认识:0没有倒数,1的倒数时它本身。并且在说明理由时,学生还认为“0不能做分母,所以0没有倒数”这个理由,拓展了我所提供给学生的知识内容。
“倒数的认识”教学设计14
【教学内容】
教材P28页中的例1、“做一做”及练习六中的部分练习题。
【教学目标】
1、知识与技能:通过一些实例的探究,让学生理解和掌握倒数的意义。在合作探究中掌握求倒数的方法,会求一个数的倒数。
2、过程与方法:引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。
3、情感、态度与价值观:通过学生亲身参与探究活动,体验数学学习的乐趣,激发他们积极的学习情感,养成合作探究问题的习惯。
【教学重点】
理解倒数的意义,学会求倒数的方法。
【教学难点】
小数与整数求倒数的方法以及0、1的倒数。
【教学方法】
创设情境、启发诱导、合作交流、自学与讲授相结合等。
【教具准备】
课件
【教学过程】
一、激趣引入
师:(板书“呆”)呆是一个上下结构的字,“呆”字如果上下颠倒就成了“杏”,语文中的文字有许多这样的构字规律,比如(杏——呆;吞——吴;音——昱;士——干……)那么在数学中的数也有这种规律吗?
二、新知探究
(一)探究讨论,理解倒数的意义。
1、课件出示算式。
先计算,再观察,看看有什么规律。
3/8×8/37/15×15/75×1/51/12×12
小组汇报交流
2、出示倒数的意义:乘积是1的两个数互为倒数。
3、你是怎样理解“互为倒数”的呢?能举例吗?
4、倒数的表达方式。
(二)深化理解。
1、乘积是1的两个数存在着怎样的倒数关系呢?
2、互为倒数的两个数有什么特点?
3、想一想:1的倒数是多少?0有倒数吗?为什么?怎么理解?
4、辨析:下面的说法对吗?为什么?
A:2/3是倒数。()
B:得数为1的两个数互为倒数。()
C、7/15和15/7乘积是1,所以7/15和15/7互为倒数。()
D、0的.倒数还是0。()
(三)运用概念。
1、讨论求一个分数的倒数的方法。
出示例1:写出其中3/5和7/2两个分数的倒数。
(1)学生试做并讨论。
(2)生汇报:
(3)师生共同小结:求一个分数的倒数,只要把这个分数的分子、分母调换位置。
2、怎样求整数(0除外)的倒数?请求出6的倒数是几?(出示课件)
3、1的倒数是几?0的倒数是几?
(1)学生试做并讨论。
(2)生汇报:
(3)师生共同小结:1的倒数是1,0没有倒数。
4、小结。
求一个数的倒数(0除外),只要把这个数的分子、分母调换位置。
三、巩固练习
1、写出下面各数的倒数。
4/1116/97/84/1535
2、判断。
(1)真分数的倒数都是假分数。()
(2)假分数的倒数都小于1。()
(3)0的倒数是0,1的倒数是1。()
四、课堂小结
今天我们学习了有关倒数的哪些新知识?
“倒数的认识”教学设计15
学情分析:
本班级学生在学习本课时内容时,已经学会了分数乘法的计算,在具备分数乘法计算能力的基础上进行学习《倒数的认识》,我相信本班级学生能顺利地完成这一课时内容的学习,且学会这一课时也将为以后学习分数除法打下坚实的基础。
教学目标:
1、理解倒数的意义,掌握求倒数的方法,并能正确、熟练地求出一个数的倒数。
2、在充分的观察、思考、分析、讨论活动中,培养学生的思维能力和灵活解决问题的能力。
3、通过本节课的学习,激发学生学习数学的兴趣,让学生体验成功的快乐。
教学重难点:
重点:倒数的意义与求法。
难点:1、0的倒数,整数、小数、带分数的倒数的求法。
教具准备:课件(或练习张贴纸)
教学过程:
一、揭示倒数的意义
同学们,我们已经学会了分数乘法的计算。这节课我们将运用分数乘法的知识去解决新的问题,大家有信心学好吗?请看大屏幕。课件依次展示(一).(二):
(一)同学们认识以下各组汉字吗?请仔细观察每组汉字,你有何发现?
吴——吞杏——呆干——士
(二)仔细观察下列各组算式,再进行计算。
(三)计算过后,你们发现了什么?
(四)指出今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?
答后组织学生进行一场写乘积是1的任意两个数的算式的比赛。(限时1分钟)
(五)学生汇报,教师有选择地进行板书。
对学生的学习成果加以肯定表扬。进而追问:
1,如果给你们充足的时间,你们还能写出多少个这样的乘法算式?(指名让学生回答)
2,那么你们是根据什么条件写出这么多的算式呢?(思考后指名让学生回答并集体交流订正。)
(六)揭示倒数的意义:刚才同学们所写的两个数的乘积都是1。像这样乘积是1的两个数,我们把它们称之为互为倒数。
板书:乘积是1的两个数叫做互为倒数。(生齐读,师让生划出关键词进行交流熟记。)
(七)举例说明倒数的意义。
1,黑板上所写的两个数的乘积都是1,所以它们互为倒数。比如和乘积是1,我们就说和互为倒数,或的倒数是、是的倒数。
板出:和互为倒数的倒数是是的倒数
2,为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?(思考后指名学生回答)
3,指出倒数是表示两个数之间的关系,它们是相互依存的,所以必须说一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?(预设:约数和倍数。)
4,举例引导学生认识今天学习的倒数与约数、倍数一样都是表示两个数之间的关系,必须是相互依存,而不能独立地存在。5和的积是1,我们就说……(生说)× =1,这两个数的关系可以怎么说?(生说)
5,同学们都学得不错,现在老师要考考大家是不是真正理解了倒数的意义。
(八)课件出示测试题。
1、判断
1.得数是1的两个数叫做互为倒数。 ()
2.因为10× =1,所以10是倒数,是倒数。 ()
3.因为+ =1,所以是的倒数。 ()
2、口答练习。
1×()=1 ×()=1×()=1 ×()=1
下面哪两个数互为倒数。(连线)注:以下为例7学习内容。
二、探索求一个数的倒数的方法。
(一)引导观察,发现特征:
1,我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起观察一下刚才的这些例子,看有何发现?(观察后指名学生回答)
2、指出分子和分母调换了位置,相乘时分子和分母就可以完全约分,得到乘积是1。
3、根据这一特点你能写出一个数的倒数吗?
4、试一试:写出、的倒数。(完后指名板演,集体交流订正)
5、引导小结:求一个数的倒数的方法,只要把分数分子分母调换位置。
(二)思考讨论,延伸运用:1,除了真假分数外,其它数的'倒数你们能写出来吗?
2,课件出示讨论题:
(1)18的倒数是什么?1的倒数是什么?0的倒数呢?
(2)的倒数是什么?
(3)0.2的倒数是什么?
3,练习:写出下列各数的倒数:
8 37 0.3 1.2
4,我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。(生思后指名说)。
5,引导总结:求一个分数的倒数,只要把分子分母调换位置。如果是求一个带分数的倒数时要先化成假分数;求一个小数的倒数时要先化成分数(最简分数);求一个整数(0除外)的倒数时,可以把这个整数看成分母是1的分数;然后再调换分子分母的位置。(让生齐读)
三、练习巩固,加深认识。
1、请打开课本P50阅看,把你认为重要的划起来读一读。
2、完成“练一练”。
写出下面各数的倒数。
8
(1)完后问学生的倒数可以这样写吗?= 。(预设:1除外互为倒数的两个数是不会相等的。)
(2)师:我们在书写时要写清谁是谁的倒数,或谁的倒数是谁。
3、先说说下面每组数的倒数,再看看你能发现什么?
(1)的倒数是();的倒数是();的倒数是();
(2)的倒数是();的倒数是();的倒数是();
(3)的倒数是();的倒数是();的倒数是();
(4)3的倒数是();9的倒数是();14的倒数是();
4、填空。
7×()= ×()=()× =0.17×()=1
5、独立完成课本P51练习十第1-6题,师巡视。完后师问生答进行对照,共同订正。
四、课堂总结:今天我们学会了什么知识?还有不理解的地方吗?
五、布置作业:练习十第2、3题。
【“倒数的认识”教学设计】相关文章:
倒数的认识教学设计03-26
《倒数的认识》教学设计12-08
倒数的认识教学设计01-31
倒数的认识教学设计15篇04-05
《倒数的认识》教学反思09-26
倒数的认识教学反思04-16
数学倒数的认识教学反思12-12
倒数的认识教学反思(15篇)09-18
倒数的认识教学反思15篇09-10