- 相关推荐
最小公倍数教案
在教学工作者实际的教学活动中,往往需要进行教案编写工作,教案有助于学生理解并掌握系统的知识。教案应该怎么写才好呢?以下是小编为大家收集的最小公倍数教案,欢迎大家借鉴与参考,希望对大家有所帮助。
最小公倍数教案1
教学要求:
1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最小公倍数。
2、让学生感受数学与生活的联系,体会解决问题策略的多样性。
教学重点与难点:
让学生在用不同方法找两个数的公倍数和最小公倍数的过程中,逐步掌握方法,形成技能。
教学流程:
一、基础练习找出下面每组数的最小公倍数。4和63和75和910和6
二、完成第25页的5~8题。
1、第5题
⑴①让学生观察左边4题,说说这几组数有什么共同的`特点。
②找出每组两个数的最小公倍数。
③比较和交流:有什么发现?(两个数的最小公倍数就是它们的乘积。)
⑵独立完成右边4题,再比较交流发现了什么?
2、第6题
3、第7题先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过程实际上就是求7和8的最小公倍数。
4、第8题先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的最小公倍数,再让学生独立解答。
三、小结:通过今天这一节课的学习,你有什么收获?
四、思考题
提示:先用列举法找3、4和6的最小公倍数。
最小公倍数教案2
教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的。
教学重点 掌握求两个数的的方法。
教学难点 正确、熟练地求出特殊情况下两个数的。
教学过程
一、创设情境
1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。
2.回答问题:什么是公倍数?什么是是?
3.求24和32的。
4.说说下面每组中的两个数有什么关系?
12和36 4和5
二、揭示课题
我们已经学会求两个数的,这节课我们将继续学习求特殊情况下两个数的。(板书课题:求特殊情况下两个数的)
三、探索研究
1.教学例3
(1)先让学生用上节课学的方法分别求出这两组数的。
(2)观察结果:通过这两组数的,你发现了什么?
(3)归纳方法:先让学生讲,再指导学生看教材第73页的结论。
(4)尝试练习。
做教材第74页下面的做一做,先让学生判断每组中两个数的关系,再解答出来集体订正。
四、课堂实践
1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。
2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的,并订正。
3、做练习十五的第9题。先让学生独立判断,对的打,错的打,再点几名学生讲打或的理由。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
做练习十五的第8题。
课题三:求三个数的
教学要求 使学生在理解的基础上学会求三个数的。
教学重点 求三个数的与求两个数的的区别。
教学难点 会求三个数的。
教学过程
一、创设情境
求下面各组数的。(学生做完后,集体订正时,点几名学生说怎样求两个数的)
5和8 7和28 12和16
二、揭示课题
我们已经学会求两个数的,怎样求三个数的呢?现在我们一起来学习。(板书课题:求三个数的)
三、探索研究
1.教学例4。
(1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)
8=222
12=223
30=2 35
(2)分组讨论。
①8、12、30的必须包含哪些质因数?
②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5 ,(22235)这些质因数是否包含了8、12和30所有的质因数?
③8、12和30的是多少?
(3)归纳:8、12和30的,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(22235=120)就是8、12和30的。
(4)求三个数的的方法。
求三个数的与求两个数的的方法大同小异。(板书短除式)
8 12 30
①先用什么数作除数去除?
②再用什么数作除数去除?(重点指导:另一个数要移下来)
③一直除到什么时候为止?
④最后怎样做就可以求出三个数的?
(5)比较求三个数的与求两个数的有什么不同?(先可让学生说,然后老师归纳)
相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。
不同点:求两个数的时,除到两个商是互质数这止;而求三个数的时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。
四、课堂实践
1.做教材第75页的做一做。
2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的质因数还没有找完。在用6除时把8移下来,就等于在里多取了一个质因数2。
3.做练习十五的第13题,学生口答。
五、课堂小结
学生小结今天学习的内容、方法。
六、课堂作业
1.做练习十五的第10、11、14题。
2.有兴趣、有余力的`学生可做练习十五的第21*~23*题。
课题四:最大公约数和的比较
教学要求 通过比较,使学生进一步分清求最大公约数和的相同点和不同点,并能正确地求出几个数的最大公约数和。
教学重点 比较求两个数的最大公约数和的不同点。
教学用具 在投影片上画好教材第80页的表格(留空备用)
教学过程
一、创设情境
1.做练习十六的第1题,先让学生将能被2整除的数用△圈起来;能被3整除的数用○圈起来;能被5整除的数用□圈起来,做在书上,集体订正。
2.很快说下面每组数的。
5和7 9和45 9和12 2、3和11 8、10和40 3、4和6
二、探索研究
1.教学例5。
(1)出示例5(点2名学生在黑板上做,其余的学生做在练习本上):
28 42 28 42
7 14 6 7 14 6
2 3 2 3
28和42的最大公约数是: 42和28的是:
27=14 2723=84
(2)揭示课题:我们现在来比较一下,求两个数的最大公约数和的方法有什么相同点和不同点。(板书课题:最大公约数和的比较)
(3)出示留空的表格。
先让同桌的学生互相说说,再点几名学生谈自己的看法,最后归纳填表。
(4)看表上的不同点回答。
为什么它们在计算时不相同?
使学生明确:①因为两个数最大公约数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公约数。②而两个数的不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的。
(5)尝试练习。
做教材第80页的做一做,然后点几名学生说一说是怎样做的。
三、课堂实践
做练习十六的第2题。
四、课堂小结
学生小结求两个数的最大公约数和的异同点。
五、课堂作业 。做练习十六的3、4、5、6*题。
最小公倍数教案3
教学内容 第十册数学P72—74最小公倍数
教学目标
1、在原有知识结构的基础上,通过自主建构,形成新的知识结构,掌握最小公倍数的意义及求法。
2、培养学生的迁移、判断、推理、分析能力。学会反思,学会合作。
3、培养学生的积极学习情感,学会欣赏他人。
教学过程
一、再现原有知识结构
1、用短除法求30与45的最大公约数
独立完成,一人板演,集体订正。
师提问:怎样用短除法求两个数的最大公约数?
(评析:根据教材的内容与学生的实际需要设计课堂引入环节,实实在在,利于学生再现原有知识结构,为构建新的知识结构做好了知识准备与心理准备。)
二、构建新的知识结构
1、揭示课题
今天我们来研究最小公倍数。(板书课题)
2、明确意义
师:你认为什么是最小公倍数?
生1:两个数公有的最小的倍数。
师:说的很好,你很会扩写。(生笑)
生2:两个数公有的.倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。
生3:公倍数可以是两个数公有的倍数,也可以是三个或四个数公有的倍数。我认为应改成几个数公有的倍数叫做它们的公倍数,其中最小的一个是它们的最小公倍数。师:太好了,谁能再说一遍。
生说完师出示,齐读。
(评析:有了最大公约数的认知基础,学生很容易通过迁移实现对最小公倍数这一概念的自主建构。因此教师直接揭示课题,让学生根据自己的理解,互相补充完善最小公倍数的概念,取得了很好的效果。)
3、探讨求法
出示:求4与5的最小公倍数。
师:你认为可以怎样求两个数的最小公倍数?
生1:用短除法。(师板书:短除法)
师:oh,你会吗?
最小公倍数教案4
教学要求
①使学生理解公倍数、最小公倍数的概念。
②使学生初步掌握求两个数的最小公倍数的方法。
③培养学生抽象概括的能力和实际操作的能力。
教学重点理解公倍数、最小公倍数的概念。
教学难点求两个数的最小公倍数的方法。
教学用具投影仪
教学过程
一、创设情境
1、口答:求下面每组数的最大公约数。
3和86和1113和2617和51
2、求30和42的最大公约数。
二、揭示课题。
前面我们已学过两个数的约数和最大公约数,现在我们来研究两个数的倍数。
三、探索研究
1.教学例1。
投影出示例1及画好的数轴。
(1)学生口述4和6的倍数,投影显示在数轴上。
(2)观察并回答。
①4和6公有的倍数是哪几个?
②其中最小的一个是多少?有无最大的?为什么?
(3)归纳并板书。
①4和6公有的倍数有:12、24、36......
其中最小的一个是12。
②也可以用图来表示。
4的倍数6的`倍数
48162012246830
..................
4和6的公倍数
(4)抽象、概括。
①什么是公倍数、最小公倍数?(让学生说)
②指导学生看教材第71页有关公倍数、最小公倍数的概念。
(5)尝试练习。
做教材第73页的“做一做”,先让学生分别填写出6和8的倍数,再让学生说:两个圈交叉部分应该填什么数?为什么不打省略号?填好后集体订正。
2.教学例2。
(1)出示例2并说明:我们通常用分解质因数的方法来求几个数的最小公倍数。
(2)把18和30分解质因数,写出短除的竖式并指出它们公有的质因数是哪些?
218230
39315
35
18=2×3×3
30=2×3×5
(3)观察、分析。
①18(或30)的倍数必须包含哪些质因数?
②如果2×3×3(或2×3×5)再乘以2或3或5得到36、54、90(或60、90、150)都是18(或30)的什么?
③18和30的公倍数必须包含哪些质因数?(2×3×3×5)
(4)归纳:18和30的最小公倍数里,必须包含它们全部公有的质因数(1个2和1个3)以及各自独有的质因数(3和5)就可以了,所以18和30的最小公倍数是:
2×3×3×5=90
(5)教学求最小公倍数的一般方法。
为了简便,我们通常用短除分解质因数的方法,写成下面的形式,求最小公倍数,如:1830并让学生分组讨论写成这种形式后该怎样做。
①每次用什么作除数去除?
②一直除到什么时候为止?
③再怎样做就可以求出最小公倍数了?
(6)尝试练习。
做教材第74页上面的“做一做”,学生解答后,点几名学生说说是怎样做的,然后集体订正。
(7)抽象、概括求最小公倍数的方法。
①谁能说说求最小公倍数的方法。
②指导学生看第74页求两个数的最小公倍数的方法。
四、课堂实践
1.做练习十五的第1题,让学生讲讲为什么?
2.做练习十五的第4题,先让学生也按要求去做,再回答谁做得对,谁做错了,错在什么地方?
五、课堂小结
学生小结今天学习的内容及方法。
六、课堂作业
做练习十五的第2、3题。
最小公倍数教案5
教学内容:完成练习四的第5~8题。
教学目标
1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最小公倍数。
2、让学生感受数学与生活的联系,体会解决问题策略的多样性。
教学重、难点:求两个数的最小公倍数的一些简捷的方法。
教学过程:
一、基础练习
找出下面每组数的最小公倍数。
4和6 3和7 5和9 10和6
二、完成第25页的5~8题。
1、第5题
⑴ ①让学生观察左边4题,说说这几组数有什么共同的'特点。
②找出每组两个数的最小公倍数。
③比较和交流:有什么发现?
(两个数的最小公倍数就是它们的乘积。)
⑵独立完成右边4题,再比较交流发现了什么?
2、第6题
先由学生独立完成。
然后说说分别是什么方法求出每组上数的最小公倍数的?
3、第7题
先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过
程实际上就是求7和8的最小公倍数。
4、第8题
先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的
最小公倍数,再让学生独立解答。
三、小结:通过今天这一节课的学习,你有什么收获?
四、思考题
提示:先用列举法找3、4和6的最小公倍数。
最小公倍数教案6
教学目标
1、使学生理解公倍数和最小公倍数的含义,学会用列举法找两个数的公倍数和最小公倍数。
2、培养学生主动探究的意识和能力。
教学过程
(一)问题情境引入
师:五(4)班小天使雏鹰假日小队有甲乙两个小组,他们约定甲组每天到社区参加一次劳动,乙组每9天到社区参加一次劳动,今天他们第一次同时在社区劳动,经过多少天他们还会再次相遇?
(二)新课展开
1.建立公倍数、最小公倍数的概念。
(1)师:你能解决这个问题吗?(学生独立思考可能有难度)四人小组可以讨论,合作完成。
学生试做,教师巡视指导,反馈。学生可能出现以下几种解法:
生甲:我们画了一条表示天数的数轴,然后分别找出甲组.乙组第一次同时去后经过几天再去,标上不同的记号,于是发现经过18天后,他们再次相遇。
可由学生边讲边画出示意图,也可由教师根据学生回答板书。
教师在充分肯定和表扬后提出,18天后他们还会再次相遇吗?
生甲:还会相遇,不过画图找太麻烦了。
生乙:我们有更好的办法,只要分别算出第一次同时劳动后,甲组经过几天劳动,乙组经过几天劳动,就可以找出经过多少天他们再次相遇了。
教师板书学生思路:
甲组经过:6天、12天、18天、24天、30天、36天……
乙组经过:9天、18天、27天、36天、45天……
所以经过18天、36天……他们会再次相遇。
……
师:(指板书)请同学们观察一下,甲组经过的天数、组经过的天数实际上是什么数?
生:甲组、乙组经过的天数分别是6的倍数和9的倍数。
6的'倍数:6、12、18、24、30、36……
9的倍数:9、18、27、36、45……
师:我们还可以用集合图来表示,师生共同画出:(图略)
师:上节课我们学习了公约数、最大公约数。那么请同学们猜猜看,这里的18、36可以称什么数?
生讨论后得出:18、36既是6的倍数,又是9的倍数,是6和9的公有倍数,即是6和9的公倍数,18是6和9的公倍数中最小的可以称为最小公倍数。
(1)师:今天这节课我们研究的就是公倍数、最小公倍数。(板书课题)
(2)师:那么什么叫公倍数、最小公倍数?
学生讨论后得出:几个数公有的倍数叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。(也可让学生自学课本后回答,教师再板书)
师:有没有最大公倍数,为什么?
生:没有最大公倍数。因为一个数的倍数是无限的,所以永远找不到最大公倍数,6和9的公倍数还有54、72、90……无穷无尽。
3、用列举法求两个数的公倍数、最小公倍数,你能再找一找6和4的公倍数、最小公倍数吗?
4、做课本第54页练一练第1题,学生试算后,反馈。
生:先找出6的倍数,再找出4的倍数,然后再找出6和4的最小公倍数。
教师随学生叙述板书:
6的倍数有:6、12、18、24……
4的倍数有:4、8、12、16、20、24……
6和4的公倍数有:12、24……
6和4的最小公倍数是12。
(2)师生共同小结方法。
(3)练习:<1>完成课本练一练第2题。
<2>完成课本练一练第3题。
<3>完成课本练一练第4题。
<4>完成课本练一练第5题。
(三)课堂小结
通过今天的学习,你有什么收获?(除什么是公倍数、最小公倍数,怎样求两个数的最小公倍数等有关概念外,还应注意学习方法、情感等方面的总结。)
最小公倍数教案7
教学内容:书~23页例1、例2和“练一练”,练习四第1~4题。
教学目标:1、让学生认识公倍数和最小公倍数,会在集合图中分别表示两个数的倍数和它们的公倍数。2、让学生学会用列举的方法找到10以内两个数的公倍数和最小公倍数,并能在解决问题的过程中主动探索简捷的方法,进行有条理的思考。3、让学生在学习过程中,进一步发展与同伴进行合作交流的意识和能力,获得成功的体验。
教学重点:1、理解公倍数和最小公倍数的含义。
2、掌握求两个数的最小公倍数的方法。
教学过程:
一、游戏导入,激发兴趣
谈话:今天我们先玩找朋友的游戏。
(黑板上标有4、6数字,其他同学的号码是他们其中一位手中卡片的倍数就请站起来,两位同学收上符合要求的号码贴在黑板上。)
出现争朋友的情况提问:你们为什么争朋友?(12、24等既是4的倍数,同时也是6的倍数)
那么12、24等数与4、6是什么关系呢?今天我们就来继续研究关于倍数的知识。
二、教学例1,认识公倍数
多媒体出示例1
1、想一想
谈话:如果用一些长是3厘米、宽是5厘米的长方形纸片分别铺在这两个正方形上,看看铺的结果怎样?(教师提供材料,如果学生不能解决可以拼一拼)
学生说猜想的结果和想法。
2、议一议
提问:为什么用这样的长方形纸片能正好铺边长6厘米的正方形?学生观察正方形的边长与长、宽之间的关系。
引导:用长3厘米、宽2厘米的长方形纸片铺边长6厘米的正方形,每条边各铺几次?怎样用算式表示?
铺边长8厘米的正方形呢?每条边都能正好铺完吗?
提问:这样的长方形纸片还能正好铺满边长是多少厘米的正方形?(同桌交流讨论)
组织学生说一说。
提问:能说说你的理由吗?
引导学生明确12、18、24……除以2和3都没有余数。
提问:6、12、18、24……这些数与2有什么关系?与3呢?学生发现6、12、18、24……既是2的倍数,又是3的倍数。
谈话:只要正方形的边长既是2的倍数,又是3的倍数,这样的正方形就能正好铺满。6、12、18、24……既是2的倍数,又是3的倍数它们是2和3的公倍数。(板书:公倍数)
提问:两个数的公倍数的个数是有限的还是无限的?为什么?
明确:因为一个数的倍数的个数是无限的,所以两个数的公倍数的个数也是无限的,可以用省略号来表示。
提问:8是2和3的公倍数吗?为什么?
学生回答:8是2的倍数,但8不是3的倍数,所以8不是2和3的公倍数。
三、教学例2,求两个数的公倍数和最小公倍数。
1、多媒体出示:6和9的公倍数有哪些?其中最小的公倍数是几?你有什么好方法能很快找出来?
学生讨论交流做法和想法。
教师组织交流:
学生想到的方法可能有:
(1)依次分别写出6和9的倍数,然后再找出它们的公倍数。
(2)先找出6的倍数,再从6的倍数中找出9的倍数。
(3)先找出9的倍数,再从9的倍数中找出6的倍数。
引导:这三种方法你觉得哪一种方法简捷一些?
谈话:6和9的公倍数中最小的一个是18,18就是6和9的最小公倍数。(板书:最小公倍数)
3、集合图
谈话:我们可以画图表示6的倍数、9的倍数和6和9的公倍数之间的关系。
展示书上的集合图,你能从图中看出哪些数是6的倍数吗?哪些数是9的倍数?6和9的公倍数是哪些数?图中的三个省略号各表示什么?6和9的最小公倍数是多少?
4、给课始活动时的板书加上集合圈。提问这里是否需要加省略号?明确什么情况下需要加省略号。
四、巩固练习,加深对公倍数和最小公倍数的认识
1、完成“练一练”。
2、做练习四第2题。
引导:4与一个自然数的`乘积都是4的什么数?5、6与一个自然数的乘积呢?怎样找4和5的公倍数?填空时还要注意什么?
3、做练习四第4题。
说明题意,引导学生思考,哪些方格两种棋都会走到?这些方格中的数有什么共同特点?动笔涂一涂。
然后同桌开展活动,玩一玩,看看红棋和黄棋是否都走到涂色的方格中。
五、全课小结(略)
六、布置作业1、练习四第1、3两题。 2、补充习题11页。
课后反思:
1、我为谁备课?
根据教材的安排,教学中可以将引进概念的环节分成三个步骤。第一个步骤是操作,让学生用长3厘米、宽2厘米的长方形纸片分别铺长6厘米和8厘米的两个正方形。备课时,我认为这个环节简直是低估学生,上学期学生多次做过类似这样的题目,学生解决这个问题不是“小菜一碟”吗?于是,我制作一套材料以备不时之需。课中,发现有些学生对能否铺满边长8厘米的正方形有异议。还好准备一套,立即演示给学生看。看似解决了问题,其实是我剥夺了学生操作感悟的机会。所以,有时自己的想法往往又高估了学生,备课还是要从学生的实际出发。当然,要从学生的实际出发,这一节课的内容就无法完成,是想照顾到全体还是想完成一节课,孰是孰非?
2、我为谁上课?
按照教材的建议,这一课时要完成例1、例2和练一练以及练习四1~4题的教学。每次公开课后我都发现学生的课后作业令人失望。究其原因,为完成教学任务,课上即使发现学生没有得到充分的思考,或者练习没有都完成,也不肯为他们停留,为他们等待,而是硬着头皮往下开,导致“夹生饭”的出炉。其实,我知道学生参差不齐,想要在一节课中让每个人都能研究透那是不可能的,所以我把希望寄托在下一节课。公开课只想给听课老师留下一个完整的一节课的印象,感觉公开课不是为学生而开了。所以我也特别希望听课的评价体制能够有所变化,我们是想听真实的课,了解学生的真实情况,还是想看一节课的流程,至少这是我的一个困惑。我究竟应该怎样上课?
最小公倍数教案8
一、教学内容 :
课本 P88~90 例 1、例 2。
二、教学目标
1.知识与技能:解公倍数、最小公倍数的概念,理解、掌握求两个数最小公倍数的方法。
2.过程与方法:使学生经历探索理解公倍数、最小公倍数的概念,求两个数最小公倍数的方法,培养学生的迁移能力和分析研究问题的能力。
3.情感、态度与价值观(育人目标):在师生共同探讨的学习过程中,激发学生的学习兴趣,培养学生良好的学习习惯。
三、重点难点:
求两个数最小公倍数的方法。
四、教学设计
(一)、小组长汇报“前置小研究”完成情况
怎样求3和2的最小公倍数?
第一步:3的倍数有:()
2的倍数有:()
第二步:3和2的公倍数有:( )
第三步:3和2的最小公倍数是:()
(二)、小组交流、探讨“前置小研究”
1、 要求小组内互相解决出现的错误,并能说说自己的方法;
2、要求学生说说:
(1)什么是公倍数和最小公倍数?
(2)两个数的公倍数的.个数是怎样的?
(三)引课:今天我们就来探究最小公倍数(板书课题)
1、出示书P88例1题
一种墙砖长 3 dm,宽 2 dm。如果用这种墙砖铺一个正方形 (用的墙砖都是整块),正方形的边长可以是多少分米? 最小是多少分米?
(1)、学生进行讨论:
(2)、出示分别用6个、24个、54个长方形摆成的边长是6分米、12分米、18分米的正方形的动画
(3)、学生反馈:这个正方形的边长必须既是 3 的倍数,又是 2 的倍数。
(4)、还可以怎样表示求3和2的最小公倍数?
①求3和2的最小公倍数,还可以用用集合圈的方法表示 ②全班交流并板书。
可以铺出边长是 6 dm,12 dm,18 dm,··· 的正方形,最小的正方形边长是 6 dm。
3的倍数 2的倍数
6, 6 是最小的公倍数,叫做它们的最小公倍数。
2、考考你:用新学的知识解决问题:完成P89做一做
3、教学例2:怎样求 6 和 8 的最小公倍数?
(1)学生独立完成,全班交流。
(2)学生交流方法有(交流时课件演示)
①列举法:先找倍数,再找公倍数,最后找出最小公倍数。 例如:6 的倍数:6,12,18,24,30,36,42,48,?
8 的倍数:8,16,24,32,40,48,?
6 和 8 公倍数:24,48,?
6 和 8 的最小公倍数:24
②用图表示也很清楚。
③6 的倍数中有哪些是 8 的倍数呢?
你还有其他方法吗?和同学讨论一下。
教师介绍:①大数翻倍法:8,16,24,?6 和 8 的最小公倍数:24 ②分解质因数法:
数的乘积。
4、通过观察,想一想:①两个数的公倍数的个数是怎样的?②两个数的公倍数和它们的最小公倍数之间有什么关系?
5、考考你会求两个数的最小公倍数吗?
完成书P90做一做:求下面每组数的最小公倍数,看看有什么发现? 3 和 6 2 和 8 5和 6 4 和 9
6、交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。
7、我能很快说出每组数的最小公倍数。
8和9() 24和8 () 30和5( ) 4和12() 36和4()48和6 () 17和13() 14和15() 23和24( )
(四)巩固练习 :书P91第1题。
(五)全课总结:通过这节课的学习,你有什么收获?
板书设计 最小公倍数
公倍数:两个数公有的倍数
最小公倍数:两个数公有的倍数中最小的那个数 找“最小公倍数”的方法:
个数的公倍数中找出两个数的最小公倍数
2、特殊情况:
①当两数成倍数关系时,这两个数的最小公倍数就是较大的数; ②当两个数是互质数时,这两个数的最小公倍数就是这两个数的积。
最小公倍数教案9
课题:
找最小公倍数
教学目标:
1.结合具体情境,体会公倍数和最小公倍数的应用,并会利用例举法等方法找出两个数的公倍数和最小公倍数。
2.培养学生分析归纳能力以及主动探究的精神。
教学重点:
理解两个数的公倍数和最小公倍数的意义
教学难点:
探究赵公倍数和最小公倍数的方法
教具:
多媒体课件
教学过程:
一.创设情境、引入新课
1.课件展示蜜蜂采蜜
师:同学们看看这是什么?
生:蜜蜂。
师:蜜蜂在干嘛呀?
生:在采蜜。
师:嗯,是的。那你们看现在蜜蜂王国日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来都非常拥挤,这可怎么办呢?
(生自由发表意见,各抒己见)
2.师:现在呢,有只小蜜蜂呢提出了这么一计策,把这些蜜蜂分成两个组,一组四分钟回来一次,一组六分钟回来一次,你们觉得这个问题完全解决了吗?同学们想一想。
(片刻之后)师:同学们把书翻到第六十页,在这个表中把4的倍数用标出来,用把6的倍数标出来。
两分钟之后展示一位同学所标出来的。
3.师:那4的倍数有哪些?
生:4、8、12、16、20、24、28、32、36、40、44、48。
师:那6的倍数又有哪些呢?
生:6、12、18、24、30、36、42、48。
又标了的有哪些?
生:12、24、36、48。
师:12、24、36、48既是4的倍数又是6的倍数,它们就叫做4和6的公倍数。
师:那么我们的两组蜜蜂在这些时候又会碰上一起回家。那它们最快是在什么时候相遇呢?
生:12分钟。
师:12是4和6的最小公倍数。
4.师:刚才我们是在50以内(包括50)的数中找4和6的倍数,如果继续找下去,还有吗?有多少个?
生:有,有无数个。
师:你能找出最大的一个吗?
生:不能。
师:4和6没有最大的公倍数,但有最小的公倍数,它就是我们这节课要学习的.内容——最小公倍数。
二.巩固练习
1.师:现在如果把蜜蜂分成两组,一组6分钟回来一次,一组9分钟
回来一次,你知道它们最快什么时候相遇吗?(完成书上60页的试一试)
师:50以内6的倍数有哪些?
生:6、12、18、24、30、36、42、48。
师:50以内9的倍数又有哪些?
生:9、18、27、36、45。
师:50以内6和9的公倍数有哪些?
生:18和36。
师:它们的最小公倍数是多少呢?
生:18。
师:我们的两组蜜蜂最快在18分钟的时候相遇了。
2.小猴子要过河了,小猴子现在要做从三块石头上走过去,可是石头都有密码的,你们可以帮助小猴子顺利过河吗?
(出示课件,50以内9的倍数、50以内5的倍数、50以内9和5的公倍数)学生独立完成再汇报。(书上61页练一练的第2题)师:刚刚我们都是用的什么方法来找最小公倍数的?
生:列举法。
师:那现在还有一种方法找最小公倍数,短除法。
21824
912
34
18和24的最大公因数就是:2×3=6.
18和24的最小公倍数就是:2×3×3×4=72。
3.求下列数的最小公倍数
3和610和89和4
4.联系实际,解决问题
师:看看,这是什么?
生:跑道。
师:同学们平时爱跑步吗?,在学校的跑道上跑一圈大概需要多长时间?现在看看他们三个人的。
(1)我跑一圈用6分钟
(2)我跑一圈用4分钟
(3)我跑一圈用8分钟
师:你能提出问题吗?
生1:他们同时出发男孩和女孩最快什么时候相遇?
生2:他们同时出发男孩和老师最快什么时候相遇?
生3:他们同时出发老师和女孩最快什么时候相遇?
(独立完成)
三.本堂小结
师:通过这节课的学习你有什么收获?
生先谈收获师再总结
1.同学们都很好的掌握了用列举法找两个数的公倍数和最小公倍数的方法。
2.学会了用短除法求两个数的最小公倍数。
最小公倍数教案10
教学目标:
1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
2.培养学生的观察能力、分析能力和归纳概括能力。
3.培养学生良好的学习习惯。
教学重点:
使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。
教学难点:
使学生学会并理解求两个特殊数的最小公倍数的方法。
教学实录:
一、引入:
师:同学们,现在是什么季节?
生:春天。
师:对,春天来了,草绿了,花开了,蜜蜂们开始忙碌起来了,其实在蜜蜂的王国里也有许多有趣的数学问题。大家看,(课件出示)蜜蜂们每天白天都忙碌的采花粉酿花蜜,但是,由于这个蜜蜂王国的日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来往往非常拥挤,这可怎么办呢?于是蜂王就想了一个办法。
点评:教师努力营造让学生爱学、乐学的课堂教学环境,密切联系有趣的生活实例,通过课件演示,创设教学环境,使学生在愉快的氛围中学习数学,同时使本课的数学知识赋予一定的价值
二、新授
1.(1)师:蜂王把它们分成了2组,1组每30分钟回来一次,1组每40分钟回来一次。它想这样可就解决问题了。同学们,你们说蜂王是否解决了这个问题?
生①:解决了。
生②:没有解决,过一段时间,它们会一起回来的。
师:有的同学认为这个办法可以,有的认为不行。请你们自己证明一下,在证明时,你可以利用手中的学具,也可以用你喜欢的其他方法。
(2)学生讨论
(3)学生汇报
师:哪个小组来展示你们的研究成果?
生①:用纸条证明,(学生在展台演示)每隔30分钟回来一次的,第四次回来要120分钟,每隔40分钟回来一次的,第三次回来也要120分钟,当120分钟时它们会同时回来,发生碰撞,所以不行。
师:这种方法形象直观,非常好,还有不同和方法吗?
生②:用数轴证明。(学生在展台演示)
师:大家认为这种方法怎么样?
生:简洁清楚。
师:有的小组用的是摆纸条的方法,有的小组用的是数轴表示的方法,都十分形象,还有不同的方法吗?
生③:找倍数的方法证明。30的倍数有:30 60 90 120;40的倍数有:40 80 120 ,我发现它们有共同的倍数120,所以第120分钟它们会相撞。
板书:30的倍数:30 60 90 120
40的倍数:40 80 120
(4)师小结:刚才同学们采用了不同方法,但都是先找出30和40的倍数,从而发现它们有公有的倍数120,看来是真的不行。
[点评:培养学生的创新精神,首先要张扬学生的个性。教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法。]
2.师:咱们换一个数试试。一组60分钟回来一次,一组90分钟回来一次。请同学们再来证明一下。
学生验证。
学生汇报。
生:60的倍数有:60 120 180;90的倍数有:90 180。所以在180分钟时它们会相遇。
师:恩,还是不行,我们发现60和90也有公倍数。
3.师:那是不是任意两个数都有公倍数呢?请同学们在小组里交流一下。
生:任意两个数都有公倍数,例如17和18的公倍数就是它们两个数的乘积。
师:通过刚才同学们的汇报我们可以看出:任意两个数都有公有的倍数,也就是公倍数。什么是公倍数?
生:两个数公有的倍数就是他们的公倍数。
师:公倍数有多少个?
生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。
师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?
生①:举例:2、4和5的公倍数是20。
生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。
师:那你能找出最大的或最小的公倍数吗?
生:没有最大的,只有最小的。
师:为什么?
生:因为公倍数的个数是无限的,所以没有最大公倍数。
点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的'理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。
4.找最小公倍数
4和8 5和10 6和15 6和9 4和5
让学生找出每组数的公倍数。
师:4和8你们怎么找得这么快?能给大家说一说你的方法吗?
生:大数要是小数的倍数,大数就是它们的公倍数。
师:你们还能发现了什么?
小组讨论,之后汇报。
生①:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。
生②:5和10的最小公倍数是10,并不是它们的乘积。
生③:4和5两个数是互质数。互质数的最小公倍数师它们的乘积。
点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。
三、总结
师:通过刚才的学习与练习,我们学会了用列举法求两个数的最小公倍数并且发现了一些特殊数求最小公倍数的方法。
设计思路:
“最大公倍数”是一节概念课,学起来比较枯燥。本课是在学生学习了最大公因数以后进行教学的,最大公因数和最小公倍数虽然属于不同的概念,但它们的学习方法相似。本课设计强调了学习方法的借鉴,让学生借鉴学习最大公因数的方法研究最小公倍数的意义,一开课,我就通过情景导入,既激发了学生的学习兴趣,又使学生在解决蜜蜂回巢的问题中初步理解公倍数和最小公倍数的概念,学会求最小公倍数的基本方法。在找公倍数的过程中,呈现出找法的多样性,引导学生分析出各种方法的优劣,促进了学生思维的个性化发展;然后变换情景中的问题作为进一步学习的材料,引导学生通过多个实例发现其中的规律,加深对公倍数和最小公倍数的概念的理解;最后,通过寻找最小公倍数的练习探索求特殊关系两个数最小公倍数的方法,加深了学生的理解与应用。同时,使学生初步感知从特殊到一般的规律,培养同学之间的协作精神。
评析:本节课虽是概念教学,但学生思维活跃,情绪高昂,学得生动有趣。
1. 结合学生实际创设问题情景。“最小公倍数”这一课,与学生的生活实际看似无多大联系,在本堂课的教学中,教师通过对教材内容作适当补充调整,为学生提供了生动有趣的信息,从而构建了一种解决问题的数学课堂。先以故事的形式提出问题,为学生提供了一个“公倍数”的实物模型,让学生借助具体实例,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。在此基础上,引导学生走进数学,抽象出公倍数、最小公倍数等数学概念。这样的设计,不仅激发了学生学习的强烈兴趣,而且让学生感受到数学与生活是紧密联系的,体会到学习数学源于生活又高与生活的特点。
2. 让学生经历知识的形成过程。本节课,教师充分体现了这一新课程理念。如,在获取公倍数、最小公倍数的特征这个环节中,教师为学生创设了一定的情景,然后放手让学生合作解决,教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法,在此基础上抽象出公倍数、最小公倍数的概念。在初步获得所学知识后,教师又巧妙地引发学生更深层次地思考,使学生产生了深刻的体验,从中进一步感悟并理解公倍数和最小公倍数的概念。同时通过自主探究发现互质的两个数的最小公倍数是这两个数的乘积;倍数关系的两个数的最小公倍数是其中较大数。(作者:山东省济南市市中区教研室 董惠平 山东省济南市胜利大街小学 唐忠亮 吴颖昕 王婷)
最小公倍数教案11
教学内容:教科书五年级上册第81——82页及练习。
教学目标:
1、在异分母分数大小比较的活动中,经历认识最小公倍数和用短除法求最小公倍数的过程。
2、了解最小公倍数,学会用短除法求两个数的最小公倍数。
3、能积极主动参与数学活动,获得积极的学习体验,提高对数学的兴趣。
教学重点:学会用短除法求两个数的最小公倍数。
教学过程:
一、课前活动——对口令
师:上课前我们先来做个游戏——对口令,老师说一个数请你对出它的倍数1、对9、12的倍数。
2、对出一个数,它既是2的倍数也是3的倍数。
二、创设情境,感知概念
1、两个数的公倍数和最小公倍数的概念教学
师:同学们,我们每周都会上微机课,老师想了解一下同学打字情况,那谁愿意介绍一下你一分钟能打多少个字呢?
请几位学生说说自己一分钟能打多少个字。学生打字的速度各有不同,教师可进行激励性。如:真不错,你一分钟能打这么多字;打得慢了点,没关系,只要你经常练习,一定会越来越快。
师:你们知道吗?我们的小伙伴红红和聪聪都是打字的能手,他俩打同样一份稿件进行了一次打字比赛。
出示教材上的情境图。
师:从两个人的对话中了解到哪些数学信息?
生1:聪聪用了5/6小时。
生2:红红用3/4小时就打完了。
师:他们两个人谁打得快呢?请同学们当裁判,通过比较两个分数的大小来解决这个问题。
学生独立思考并比较,教师巡视,了解通分的方法和结果。师:谁来说说是怎样比较的?谁打得快呢?
师:谁来说说是怎样比较的?谁打得快呢?
学生交流,教师进行板书。
生1:因为6×4=24,我先把和进行通分,都化成分母是24的分数,然后再进行比较。
5/6=5×4/6×4=20/24,3/4=3×6/4×6=18/24
20/24>18/24,所以5/6>3/4。
红红打得快。
生2:我也认为红红打得快。但是我把5/6和3/4进行通分,都化成分母是12的分数,然后再进行比较。
5/6=5×2/6×2=10/12,3/4=3×3/4×3=9/12
10/12>9/12,所以5/6>3/4。
……
如果学生只有分母是24或12的一种方法,教师要作为参与者介绍另一种方法。
师:现在请大家观察这两种方法,你发现有什么相同的地方和不同的地方?
学生可能有不同的表达方式,概括一下,应有如下回答:
●相同的地方
(1)这两种方法都是先把5/6和3/4进行通分后,再比较大小的。
(2)两种方法通分时用的分母12和24都是6和4的公倍数。
教学预设
●不同的地方
(1)第一种方法,通分时用两个分数分母的积24作分母,第二种方法,通分时用4和6的公倍数12作分母。
(2)24是12的2倍。
……
师:同学们观察得非常仔细,两种通分方法中,12和24都是6和4的公倍数。那么,4和6的公倍数还有哪些?请同桌的同学合作,在老师发给你们的椭圆形纸片上分别写出50以内4和6的倍数,再圈出它们的公倍数。
学生自己找,教师巡视。
师:说说你们是怎么找的?4和6的公倍数都有哪些呢?生:我先找出4和6各自的倍数
4的倍数有:4,8,12,16,20,24,28,32,36,40,44,48,
师:如果让你继续找下去,4的倍数还有没有?用什么表示?
生:还有无数个,用省略号表示。
生:6的倍数有:6,12,18,24,30,36,42,48,
师:如果让你继续找下去,6的倍数还有没有?用什么表示?
生:还有无数个,也用省略号表示。
生:然后找4和6的公倍数有:12,24,36,48,……。
教师根据学生的回答出示课件。
师:观察我们找到的50以内6和4的这几个公倍数,想一想,如果继续找下去,48后面一个公倍数是几?说一说你是怎样判断的?
学生可能会说:
生:继续找下去,48后面一个公倍数是60。因为每两个公倍数之间都相差12,48加12等于60。
师:60后面还有没有?还有多少个?
生:还有无数个,用省略号表示。
师:有没有最大公倍数?
生:没有最大公倍数。因为4和6的公倍数有无数个,找不到最大的一个。
师:同学们说的很好。现在再来观察4和6的这些公倍数,没有最大的我们能找到一个最小的.谁?
生:12。
师:还有比12小的公倍数吗?
生:没有了。
师:我们给它起个名字叫做这两个数的最小公倍数。这节课我们就来重点研究一下最小公倍数。(教师板书课题:最小公倍数)
师:我们对公倍数和最小公倍数有了一些认识,谁能用自己的话说说什么是公倍数?什么是最小公倍数?同桌的同学现互相说说。
学生之间互相交流。
教师引导学生出概念(出示课件)让学生读一读。
师:刚才我们找了4和6的最小公倍数,现找了4的倍数,又找了6的倍数,最后找到4和6的最小公倍数。这种方法太麻烦,其实有一种更简便的方法——短除法(教师边说边板书用短除法求4和6的最小公倍数)
用短除法求两个数的最小公倍数与上学期我们学过的求两个数的最大公因数的书写方式一样。
板书设计:
最小公倍数教案12
教学内容:
人教版义务教育教科书数学五年级下册第68—69页。
教学目标:
1. 学生结合具体情境,体会并理解公倍数和最小公倍数的含义,会在集合图中表示两个数的倍数和公倍数。
2. 通过自主探索,使学生经历找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。
3. 在探索交流的学习过程中,使学生获得成功的体验,激发学生的学习兴趣。 教学重点:理解公倍数和最小公倍数的含义。
教学难点:
用不同的方法求两个数的公倍数和最小公倍数。
教学过程:
一、游戏导入
同学们都知道自己的学号吧,我叫到学号的同学请起立,看看谁的`反应快。(课件出示:学号是4的倍数的同学请起立;是6的倍数的同学请起立)哪些同学站起来2次?请站起来两次的同学再次起立,依次报出你们的学号。
师:想一想,他们为什么站起来两次?
生:因为他们既是4的倍数也是6的倍数。
师:你能给它起个名字吗?(板书公倍数)这节课我们就来研究关于公倍数的问题。 设计意图:说明通过报数游戏,让学生在研究现实问题的情境中学习数学,激发学生的学习积极性。
二、自主探索
(一)公倍数和最小公倍数的概念
1. 回忆学习方法
师:请同学们回忆,我们是怎样研究公因数的?
生:先分别写出两个数的因数;从这些因数中找出相同的因数就是公因数;其中最大的一个因数就是这两个数的最大公因数。
师:我们就用这样的方法来研究游戏中4和6的公倍数问题。
2. 自主探究
学生在练习本上独立找出4和6的公倍数。
3. 汇报交流
学生交流自己的学习成果,同学间互相讨论。(两个数有没有最大的公倍数?为什么?)
4. 小结概念,课件演示集合图。
12,24,36,……是4和6公有的倍数,叫做它们的公倍数。其中,12是最小的公倍数,叫做它们的最小公倍数。
设计意图:因为学生前面已经学习了公因数,这里让学生通过迁移的方法,很快地认识到这方面的知识,从而使学生获得成功的体验。
(二)求两个数的公倍数和最小公倍数的方法。
师:请用你想到的方法找出6和8的公倍数和最小公倍数。
(1)学生独立完成,全班交流。
(2)学生交流方法有:
①列举法:先找倍数,再找公倍数,最后找出最小公倍数。
例如:6 的倍数:6,12,18,24,30,36,42,48,……
8 的倍数:8,16,24,32,40,48,……
6 和 8 公倍数:24,48,……6 和 8 的最小公倍数:24
②用集合图表示也很清楚。
③6 的倍数中有哪些是 8 的倍数呢? 或者8 的倍数中有哪些是 6 的倍数呢?
师:这么多方法,你喜欢哪一种?
通过观察,想一想:两个数的公倍数和它们的最小公倍数之间有什么关系?
练习:18和24 15和25
三、课堂练习:
找出下面每组数的最小公倍数,看看有什么发现?
3 和 6 2 和 8 5和 6 4 和 9 3和9 5和10
交流你的发现:若两数互质,两数直接相乘求最小公倍数;若两数含有倍数的关系,较大数是两数的最小公倍数。
你能举个例子吗?
四、独立作业:
数学书71页2题
五、课堂小结:
师:今天学习了什么知识?你有什么收获?
生:几个数公有的倍数叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。
找两个数公倍数和最小公倍数的方法等等。
板书设计:
最小公倍数教案13
教学内容:求两个数的最小公倍数
教学目标:
使学生理解、掌握求两个数的最小公倍数的方法,并能正确地,合理地求两个数的最小公倍数。
教学过程:
一、复习
1、什么是公倍数,最小公倍数?
2、写出12、30的公倍数和最小公倍数?
二、教学新课
1、提出课题:“求两个数的最小公倍数”
2、把12、30和它们的最小公倍数60,分别分解质因数。
212230260
26315230
3515
5
12=2×2×3
30=2××3×5
60=2×2×3×5
观察上面各数分解质因数的情况,你发现了什么?
(最小公倍数60的'质因数里,包含了12和30公有的质因数2、3,还有12独有的质因数2,30独有的质因数5。)
3、利用上面的情况,用简便方法求12和30的最小公倍数。
21230………用公约数2除
3615……….用公约数3除
25……..只有公约数1,不必再除
把所有的除数和商连乘起来,得到:
12和30的最小公倍数是2×3×2×5=60,也可以这样表示:
[12。,30]=2×3×2×5=60
4、求两个数的最小公倍数,先用这两个数的()连续去除,一直除到所得的商只有公约数1,然后把所有的()和()连乘起来。
5、尝试练习
求下面每组数的最小公倍数。
12和16,33和22,16和20,36和54,30和45,10和15
三、教学求倍数关系,互质关系的最小公倍数。
在下面各组数中找出倍数关系,互质关系
12和36,9和5,36和12,4和9,25和75,20和3,51和17,8和11
1、倍数关系
2、互质关系
3、想一想
(1)如果大数是小数的倍数关系,那么()就是这两个数的最小公倍数。
(2)如果两个数是互质数,那么这两个数的()就是它们的最小公倍数。
四、巩固练习
书本第56页1至4题。
五、归纳
六、布置作业
反思:让学生了解求两个数的最小公倍数为什么要把两个数的公约数还要各自独有的约数。这是本节课的重点。
最小公倍数教案14
教学内容:
苏教版义务教育教科书《数学>五年级下册第43~44页例1 1、例1 2和“练一练’’,第46练习七第9~10题。
教学目标:
1.使学生理解和认识公倍数和最小公倍数,能用列举的方法求两个自然数的公倍数和最小公倍数,能通过直观图理解两个数的倍数及公倍数之间的关系。
2.使学生借助直观认识公倍数,理解公倍数的特征;通过列举探索求公倍数和最小公倍数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。
3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心;培养与同伴合作、交流的意识和良好品质。
教学重点:
求两个数的公倍数和最小公倍数。
教学难点:
理解求公倍数和最小公倍数的方法。
教学准备:
小黑板
教学过程:
一、揭示课题
揭题:我们已经学习了公因数和最大公因数,今天这节课学习公倍数和最小公倍数。(板书课题)
提问:看了这个课题,你有什么想法? 你对公倍数有哪些想法?对最小公倍数呢?
引导:大家交流的想法,实际上是联系公因数和最大公因数进行联想,提出自己的想法。这样的学习方法可以帮助我们学好数学。那刚才大家的想法是不是正确呢?现在,我们一起来研究公倍数和最小公倍数。(板书课题)
二、学习新知
1.认识公倍数。
(1)出示例11,让学生说说知道了些什么,提出的什么问题。
引导:用长3厘米、宽2厘米的长方形铺两个正方形,哪个正好铺满,哪个不能铺满?看图想一想是为什么,你能不能根据自己的想法写出算式来说明理由,并和同桌互相说一说?
交流:哪个正方形能正好铺满,哪个不能铺满?
提问:联系铺满长方形的图形,观察列出的算式,你觉得6和3、2这两个数有怎样的关系?
说明:6既是3的倍数,又是2的倍数,是3和2公有的倍数。
(2)引导:想一想,这个长方形纸片还能正好铺满边长多少厘米的正方形?为什么?和同桌说说你的想法。
交流:还能正好铺满边长多少厘米的正方形?你是怎样想的?(明确可以正好铺满边长12厘米、18厘米的正方形)
你发现正方形的边长厘米数只要满足什么条件,就能用这个长方形正好铺满? 像这样能被正好铺满的正方形有多少个,能找得完吗?
(3) 引导:现在你发现,6、12、18、24这些数和2、3都有什么关系?说说你的想法。 指出:同学们的理解还真不错!大家发现6、12、18、24这样的数,既是2的倍数,又是3的倍数,也就是2和3公有的倍数,我们称它们是2和3的公倍数。(板书:公倍数)
追问:8是2和3的公倍数吗?为什么不是?
那哪些数是2和3的公倍数呢?(板书:6,12 ,18,24是2和3的公倍数)为什么公倍数里要用省略号?你还能任意再说几个2和3的公倍数吗?
2.求公倍数。
出示例12,明确要找6和9的公倍数和最小的公倍数。
让学生独立找出6和9的公倍数和最小的公倍数,与同桌交流自己的 方法。 交流:你是怎样找出6和9的公倍数和最小的公倍数的?
结合学生交流,教师板书用不同方法找的过程和结论,使学生领会。
小结:大家用不同的方法找出了6和9的`公倍数有18,36,54其中’最小的是18。 18是6和9的最小公倍数。
追问:有没有最大的公倍数?为什么?
说明:两个数的公倍数有无数个,没有最大的公倍数。两个数的公倍数里最小的一个,就是这两个数的最小公倍数。(板书:最小公倍数——公倍数中最小的一个)
3.用集合图表示公倍数。
引导:你也能用圆圈图表示6的倍数、9的倍数和公倍数的关系吗?自己画一画。 学生交流,呈现集合相交的图,(图见教材,略)分别标注出“6的倍数”“9的倍数”“6和9的公倍数”,并强调三个部分都有无数个数,都要用省略号表示。
让学生看直观图说说,哪些数是6的倍数,哪些数是9的倍数,哪些数是6和9的公倍数,最小公倍数是几。
指出:从图上可以直接看出,6和9公有的倍数,是它们的公倍数,其中最小的一个,是它们的最小公倍数。
三、巩固深化
1.做“练一练”第1题。
2.做“练一练”第2题。
3.做练习七第9题。
4.做练习七第10题。
四、总结提升
引导:今今天学习的是什么内容?什么是两个数的公倍数和最小公倍数? 可以怎样找两个数的公倍数和最小公倍数?写公倍数时要注意什么?
最小公倍数教案15
说课:
“公倍数与最小公倍数”是纯数学知识,对于小学生来讲是抽象的概念,因此通过情景设计----让学生在寻找最佳慰问点,以此来激发学生学习的兴趣并导入新课。
由于学生在学习“公约数与最大公约数”时已掌握了枚举法、分解质因数及短除法,因此在设计本节课时意图让学生通过已有知识经验去探究新知,而且,在探究活动中让学生根据自己的需要、根据自己的实际知识面来选择探究的问题,这样处理更能激发学生学习的欲望,调动每一个学生学习的积极性。在成果汇报时,让学生站到讲台前,讲述自己对某一问题的理解,并通过实例来补充说明,这样可以培养学生的自信心。
教学目标:
1、理解公倍数、最小公倍数的意义;会用列举法、分解质因数、短除法求两个数的最小公倍数;会求是互质数或有倍数关系的两个数的最小公倍数。
2、在知识的探究过程中,让每个学生体验成功的喜悦,并培养学生大胆质疑的习惯。
教学过程:
一、情景导入
1、从我们学校到中山公园可乘坐A、B两种车,A车大约每隔400米设有一个车站, B车大约每隔600米设有一个车站。天气越来越热了,我们少先队员开展送爱心活动,在这条线路上摆几个慰问点,为驾驶员、售票员送上毛巾擦擦汗、送上凉水解解渴。现在请你们小组商量一下,慰问点设在哪里可以同时慰问两条线路的司售人员,并且要说明你的理由。
2、在这里,我们找A、B两车的车站就是运用了有关倍数的知识,那么,你是否知道同时有两个车站的这几个数字表示的是什么呢?
出示课题:公倍数
谁能用自己的话说一说什么叫公倍数?
这一个是最小的,我们又称它为什么?
补充课题:最小公倍数
谁能再来说一说什么叫最小公倍数?
今天我们就来研究公倍数与最小公倍数。
二、探究
1、看了这个课题,你想在这节课中了解些什么?请学生写在纸上,并贴到黑板上。
2、四人一组合作解决1--2个问题,举例说明,组长笔录。可以翻书请教,在P.69-- P.71。
3、成果汇报:(由学生任选一种方法)
(1)公倍数有多少个?
(2)求最小公倍数的几种方法:
①枚举法:根据学生举例填写集合圈并说出各部分所表示的内容(参见下左图):
②分解质因数:如:12与30的最小公倍数(见上右图)
最小公倍数是两个数全部公有质因数与各自独有之因数的乘积。
=2×3×2×5=60
从这两个分解质因数的式子里你能看出12与30的最大公约数是几?
最大公约数与最小公倍数之间有什么关系?参见下左图。
最小公倍数是两个数的最大公约数与各自独有质因数的乘积。
短除法:如求:36和45的最小公倍数,参见上右图。
讨论:与求最大公约数比较有什么异同之处?
短除法与分解质因数有什么联系?
任选一种方法,求下列各组数的最小公倍数(第一组必做,其它可任选,看谁做的又快又多又正确):
16和20;65和130;4和15;18和24。
得出两个特殊情况:当两个数是互质数时,最小公倍数是这两个数的乘积;当两个数有倍数关系时,最小公倍数是较大的数。
4、总结:今天你们根据自己所提出的问题进行了研究学习,每个人的研究都非常成功,对于今天所学的内容还有什么疑问?
三、回家作业布置(感兴趣的同学做)
世纪大道是浦东新区最为壮观的.轴线大道,它横贯陆家嘴金融贸易区,起于东方明珠电视塔,止于花木行政文化中心,全长4200米。请你当一位设计师,在大道的一旁每隔()米种一棵香樟,在大道的另一旁每隔()米种一棵银杏,那么,每()米一棵香樟和一棵银杏正好面对面,这样的情况共有()组相对的树木。
教学反思:
我们的教学是要真正地为学生服务,教师的职责不是将知识灌输给学生,而是在学生在知识的海洋中遨游时帮他们把好舵。讲台不是老师的,而是师生共同的,谁都能在这里发表自己的见解。学生只有在被肯定、被信任的时候,才能提高学习兴趣、学习动机。
【最小公倍数教案】相关文章:
最小公倍数教学设计08-02
【通用】最小公倍数教学设计08-02
高中教案教案04-06
教案06-23
美术教案[经典]09-23
【精选】小班教案09-17
(精选)中班教案09-10
小班教案[经典]12-04
《变脸》教案11-05