《圆的周长》教学设计
作为一无名无私奉献的教育工作者,通常需要用到教学设计来辅助教学,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。如何把教学设计做到重点突出呢?下面是小编整理的《圆的周长》教学设计,希望对大家有所帮助。
《圆的周长》教学设计1
教学目的
1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。
2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。
3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。
4、了解圆周率的数学史话,接受爱国主义教育和培养严谨的科学精神。
教学重点、难点
推导圆周长计算公式,理解圆周率的意义。
教具准备
圆片、铁圈、绳子、直尺。
教学过程
一、把准认知冲突,激发学习愿望。
1、问题从情境中引入:小明和小强进行赛跑比赛,(如图)小明绕着长方形地跑,小强绕着圆形跑。小明跑的路程是什么?小强呢? 同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为小明和小强谁获胜的可能性大些?(引导揭示课题:圆的周长)
2、化曲为直,测量周长。
(1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。
(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?
讨论:
方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;
方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)
(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能) 指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。
【反思】教育心理学家奥苏伯尔说过:“影响学生的唯一最重要的因素,就是学习者已经知道了什么。要探明这一点,并据此进行教学。”我们应遵循实际,在把学生已有的知识作为教学的起点。注意不断地把学生的认识组织在矛盾运动中,使教学过程成为“不断地揭示和呈现矛盾→引导学生分析矛盾和研究矛盾→解决矛盾”的过程。测量圆的周长,教师让学生经历了“剪开拉直”→“先绕后量”→“滚动测量”→“寻找计算方法”的过程。教师和学生一起不断地产生认知冲突,不断地平息冲突,又不断地产生冲突,最终产生寻找圆周长计算的一般方法。学生在这种“冲突→平衡→再冲突→再平衡”的周而复始的矛盾运动中,理解了知识,激发求知的欲望和热情。
二、经历探究全程,验证猜想发现。
㈠圆的周长与直径有关系。
1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?
2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?
3、总结:圆的直径的长短,决定了圆周长的长短。
㈡圆的周长与直径的倍数关系。
1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结: 通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,多媒体课件显示:圆的周长总是直径的3倍多一些)
【反思】合理猜想──有效探究的前提。猜想是人们依据事实、凭借直觉所做出的推测,是一种创造性的思维活动。纵观数学发展历史,很多著名的数学结论都是从猜想开始的。伟大的数学家高斯指出:“若无某种大胆放肆地猜想,一般是不可能有知识的进展的。”数学方法理论的倡导者波亚利对数学猜想有过这样的描述:“在数学的领域中,猜想是合理的、值得尊重的、是负责任的'态度。”他认为,在有些情况下,教猜想比教证明更为重要。所以,教会学生学会数学猜想就显得尤其重要。本节课,教者引导学生进行了两次合理猜想。一是猜想圆的周长与直径有关,是通过直觉观察引发的。二是猜想圆的周长与直径有倍数关系,是根据正方形的周长与边长的关系而类比产生的。教者引导学生通过对图形的分析,挖掘有价值的问题:圆的周长一定是直径的2-4倍。合理的猜想科学地定位了探究的思路,提高了课堂的实效。学生在猜想过程中,新旧知识的碰撞,激发智慧的火花,思维有了很大的跳跃,提高了数感,发展了推理能力,锻炼数学思维。小心验证──科学归纳的保证。美妙的猜想,只有经过科学的验证,才能彰显智慧的光环。为了提高探究的效率,验证时往往要融入讨论、实验、计算、观察、归纳和概括于一体,教者应留给学生足够的时空,充分解放学生的脑、手、眼、口等多种感官参与探究过程。要在鼓励学生发表独特见解的基础上,善于找到结论的相似之处进行归纳。小心验证,还要讲求实事求是。尊重学生研究的结果,要正确处理好研究结果与科学的结论之间的差距,不能简单地否定学生研究的结果,挫伤学生的积极性。本节课探究圆的周长与直径的倍数关系,学生运用“化曲为直”的方法测量圆的周长,算出周长与直径的比值。由于测量的误差,学生只能计算出圆的周长是直径的3倍多一些。教者遵循实际,肯定学生验证的真实性。课堂上教师实事求是的科学态度,会进一步激发学生探究的热情,同时这种科学态度对学生终身的影响也是不可估量的。
三、感受数学文化,激发情感体验。
1、、介绍刘徽的“割圆术”。课件演示把圆切割成正十二边形、正二十四边形,分别算出周长与直径的比值。
2、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径3.3333米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是0.852毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到了比较精确的圆周长和直径的比值在3.1415926和3.1418927之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)
3、介绍计算机计算圆周率的情况。
4、教学圆周率:π≈3.14。
【反思】数学文化的内涵不仅表现在知识本身,还寓于它的历史。著名数学家霍格本曾经说过:“数学史实际上是与人类的各种发明与发现、人类经济结构的演变、以及人类的信仰相互交织在一起的”,确实打开数学发展史,见到的是人类文明进步的历史,完全有理由、也有必要让学生更多地去了解,使得数学的学习成为名副其实的文化传播。本节课向学生介绍了人类探索圆周率的过程,拓宽了他们的数学视野,让学生感受到数学文明的发展,体验到人类不断探索的脚步。通过介绍刘徽和祖冲之,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪。同时通过史话的介绍,让学生觉得圆周率发现的不易,帮助他们从小培养严谨的科学精神。
四、刷新应用能力,总结巩固新知。
1、请你用自己的话总结一下怎样计算圆的周长?用字母怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?
2、尝试练习:一辆自行车车轮的直径是0.66米。车轮滚动一周,自行车前进多少米?(得数保留两位小数)
3、明辨是非:
(1)圆的周长和直径的比的比值叫做圆周率。( )
(2)大圆的圆周率大于小圆的圆周率。( )
(3)π的值等于3.14。( )
(4)半径是10厘米的圆,它的周长是31.4厘米。( )
4、抢答:求下面各圆的周长: d=2厘米,d=3厘米,d=4厘米,d=5厘米, d=6厘米,d=7厘米,d=8厘米,d=9厘米让学生记住这些算式的乘积。 5、课堂作业:练习二十五2-5题。
【反思】荷兰数学教育家弗赖登塔尔反复强调:“学习数学的唯一正确方法是实行‘再创造’,也就是由学生本人把要学的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生”。“如果学习者不进行再创造,他对学习的内容就难以真正的理解,更谈不上灵活应用了”。我们不但要在学生学习新知识的过程中去引导和帮助学生进行这种“再创造”,而且在组织练习时应不断设置思维障碍,不断引起学生的认知冲突,在学生力所能及的范围内,让学生跳起来摘果子,去进行这种“再创造”,并在“再创造”的过程中体验成功的喜悦。本节课教师在练习运用阶段,通过让学生抢答,引导学生记住3.14×1、3.14×2、……3.14×9这些算式的乘积。这看似有点死记硬背,但实践证明:对这些运算结果的适当记忆,可以减轻学生的计算负担,为学生的后续学习打下坚实的基础。
《圆的周长》教学设计2
【教学内容】
《义务教育课程标准实验教材 数学》六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义。
2.通过对比分析掌握圆周长的计算公式。
3.能用圆的周长的计算公式解决一些简单的数学问题。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:推导圆的周长的计算公式,准确计算圆的周长。
难点:理解圆周率的意义。
【教学过程】
一、情景引入
出示一块钟表
问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?
学生猜想。
教师演示小秒针的运动过程,证实学生的猜想是否正确。
问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?
生:先计算出走一圈的路程有多长,在计算出走60圈的长度。
师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)
(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
二、动手量一量
学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。
物品名称
周长
直径
1号圆
2号圆
3号圆
4号圆
教师评价学生小组合作的情况。
(设计目的:强调学生的小组合作意识)
师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。
学生展示小组的成果。
(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)
三、对比分析
师:观察一下我们得到的几组数据,你发现什么规律了吗?
学生自由谈。
学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。
师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。
课件展示圆的周长的测量方法。
(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)
课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。
(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)
小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。
你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的`,你能讲给同学们听吗?
学生自由谈。
我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计目的:通过学生讲故事渗透爱国主义思想)
小结2:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
圆的周长(用字母C表示)计算公式:C=πd或C=2πr
四、动手做一做
下面我们来看看怎样应用圆的周长计算公式来解决问题。
1.计算圆的周长
实物投影展示学生的解题过程
(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)
2.一个圆形喷水池的半径是5m,它的周长是多少米?
(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)
3.小组交流错误原因。(可让其他学生避免同样的错误)
(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)
4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。
(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)
五.你能说说在这一节课中你有什么收获吗?
可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。
六、课外合作:
小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。
(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
《圆的周长》教学设计3
教学目标:
1、使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。
2、培养学生的观察、比较、分析、综合及动手操作能力。
3、初步学会透过现象看本质的辨证思维方法。
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:推导并总结出圆周长的计算公式。
教学难点:深入理解圆周率的意义。
教学准备:电脑课件、测量结果记录、计算器、直尺、直径不同的圆片、实物投影等。
教学过程
一、情景导入:
师:老师这里有一张图片,同学们想看吗?
师:请看大屏幕,这是我们学校的直径是9米的圆形水池,为了同学们的安全,学校要在水池的周围安装上护栏,需要多长的护栏呢?你有办法知道吗?
师: 我们看这个水池的边沿是圆形,安装护栏的长度就是圆的周长。如果我们知道了圆的周长,这个问题是不是就解决了?
师:这节课我一起研究圆的周长。
板书课题:圆的周长
二、探究新知:
1、圆的周长含义
师:请看大屏幕,这是一个圆,谁能看着圆再说一说什么是圆的的周长。
师:围成圆的曲线的长叫做圆的的周长。
2、测量圆的周长 师:怎样才能知道圆的周长是多少呢?师: 请同学们拿出准备好的圆片,你能想办法测量出它的周长吗? 生测量活动,师巡视。
师:谁愿意说说你是怎么测量的?
师:还有不同测量的方法吗?
师多媒体演示。
我们可以在圆片上作个记号,然后把圆片沿着直尺滚动一周,这样就测量出圆片的周长大约是31.5cm。
我们还可以用绳子绕圆片一周,作好记号,然后把绳子拉直,用直尺量出绳子的长度,就得到了圆片的周长也大约是31.5cm。
师:现在同学们都会测量圆的周长了,我们再来看圆形水池,请看大屏幕。请你用刚才的测量方法测量出水池的周长。
生:用绳子量出水池的周长。
师:水池那么大,用绳子子测量太麻烦了,滚动就更不行了。
师:有没有比测量更科学、更简便的方法呢?
生:计算
3、探究圆的周长计算方法
①探究圆的周长与直径的倍数关系
师:如何计算圆的周长呢?
师:我们可以回想一下,计算长方形的.周长需要什么条件,怎么计算?
师:计算正方形的周长需要什么条件,怎么计算?
师 :同学们看,计算长方形、正方形的周长都需要一定的条
件,计算圆的周长也一定需要(条件),那这个条件可能是什么呢?圆的周长与什么有关呢?请同学们大胆的猜测一下。
师:如果圆的周长与直径有关,又有什么关系呢?
师 我们再来看,长方形的周长与它的条件长和宽之间有什么关系。
师:正方形的周长与它的条件边长之间有什么关系。
你们看,长方形、正方形的周长都与它们的条件之间存在着倍数关系。我们可以猜测圆的周长与直径之间也存在着(倍数关系)。
这个倍数会是几呢?同学们来猜测一下,这个倍数大于几
生1:大于2;
生2:大于3;
生3:大于4;
师:能说说你是怎样想的?
师:你从图上来看,圆的周长与直径之间的倍数会大于几。
生:直径把圆平均分成了2份,半个圆的曲线的长比直径长,圆的周长与直径之间的倍数一定大于2。
师: 有理有据。我们再来看,圆的周长和直径之间的倍数会小于几呢?
生猜并说理由。
师:这个问题有点难,老师来作个辅助图形,请看大屏幕。
(师多媒体演示圆外切正方形)
师:你发现了什么?
生:正方形的边长与圆的直径相等,正方形的周长是直径的4倍,而圆的周长比正方形的周长小,所以圆的周长与直径之间的倍数小于4。
师:你真聪明。通过同学们的猜想、交流,我们知道圆的周长与直径之间存在着倍数关系,并且这个倍数在2和4之间,到底圆的周长是直径的几倍呢?同学们能不能想办法求出来呢?
生:计算。
师:好,就用同学们这个办法来求。先测量出几个直径不同的圆片的周长,再用圆的周长除以直径,来找出圆的周长与直径之间的倍数。
下面就以小组为单位,利用手中的学具来量一量,算一算,把计算的结果记录在表格内,计算的时候可以请计算器帮忙。 (小组活动,师巡视。)
师:一定注意要测量准确,减少误差。
(集体汇报交流)
师:哪个小组愿意把你们的计算结果给大家展示一下。
(生说并展示结果)
师:请同学们来观察这些圆的周长除以直径的商,有什么特点。
生:都比3大一点。
师:也就是说圆的周长总是直径的3倍多一些。实际上圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,(板书:圆周率)大家看用这个字母表示,(板书π)。
师:会读吗?(板书pài)
师:一起读,用手在桌子上写几遍。
师:会写了吗?
师:π就是圆的周长除以直径的商,它是一个固定的数,我们再看同学们计算的圆的周长除以直径的商为什么都不一样?
生:测量不准确。
师:很会分析问题,我们计算出的这些商都不一样,是因为测量有
误差造成的。
师:老师这里有关于圆周率的历史资料,同学们想看吗?
师:请看大屏幕。(解说:古今中外,有许多数学家研究圆周率。其中,我国著名的数学家和天文学家祖冲之约在1500年前,计算出π的值在3.1415926和3.1415927之间。成为世界上第一个把圆周率的值的计算精确到小数点后七位小数的人。比国外数学家得到这一精确数值的时间至少要早1000年。)
师:有关圆周率的历史资料还有很多,如果有兴趣,请同学们课下继续搜集,查阅好吗?
师:好了,通过同学们的猜想、测量、计算,我们知道了圆的周长总是直径的π倍。知道了直径,怎么计算圆的周长。
生:圆的周长等于圆周率乘直径。
师:如果用字母C表示,那么C=?
(板书C=πd)
师:如果知道了圆的半径,我们还可以怎样计算圆的周长?
(板书:C=2πd)
师:这两个公式都是圆的周长计算公式,利用它可以计算圆的周长。
由于π是一个无限不循环小数,在计算的时候,一般取两位小数。(板书:π≈3.14)
三、实践应用:
师:现在我们来解决几个问题好吗?
1、师:请看大屏幕,请你来算算在水池的周围安装护栏需要多长的护栏。生算,集体交流。师评价。
2、老师还有一题,请看大屏幕。(生读,试做,集体交流。)
3、判断题
4、思考题
四、小结。
《圆的周长》教学设计4
各位领导、评委大家上午好!我今天说课的题目是《圆的周长》
一、教材分析
1、教学内容
这节课是人教版小学六年级数学第四单元《圆的周长》
第一课时
2、教材所处的地位
这节课是建立在求长方形、正方形的周长知识为学习基础的、是前面学习“认识圆的”进一步深化。为今后进一步学习圆的有关知识奠定基础,是相当重要的学习内容。
3、教学目标
(1)知识目标:让学生了解圆周率的定义。
(2)能力目标:让学生动手操作,利用绳测法、滚动法认识圆的周长并掌握圆周长的计算公式。
(3)德育目标:通过对学习向学生渗透爱国主义教育。
4、重点难点
重点:掌握圆周长的计算公式
难点:圆周长公式的推导
二、学情分析
这节课的授课对象是小学高年级的学生,作为小学高年级的学生,他们已经有了一些生活实践的经验积累了一些教学知识。基本具备了分析问题、归纳问题、概括问题的能力。因此让他们在自主快乐的情境中学习。是他们感受到学习不是枯燥乏味的,而是一件快乐有趣的事情,从而乐意去学。
三、说教法学法
现代教育是以人为本的教育,小学数学新课标规定应着重培养学生的探索意识、探索能力、探索思维,拓展探索思维的空间。改变以前机械说教,沉闷程式化的教学设计。
把课堂还给学生,充分发挥学生的主动性。因此,我采用的是洋思教学模式,即“先学后教、当堂训练”,在我的课堂上,学生结合自学指导,认真阅读教材,通过自主探究、合作交流、讨论来掌握新知。既培养了学生的探索意识,又让学生在课堂互动的快乐氛围接受新知。
四、说教学过程
我是按以下四个层次设计教学过程的:
1、复习旧知识、导入新课
(1)让学生找出图中直径和半径,并说出什么是圆的直径和圆的半径?直径和半径的长度有什么关系?
(2)什么是长方形的周长?什么是正方形的周长?
通过对就知识的复习为新授内容做了准备和铺垫。
2、出示自学指导、指导学生认真阅读教材,掌握本节课的知识。
自学提示:
(1)课本63页向我们介绍了两种测量圆周长的方法,一种是滚动测量法,另一种是绳测法,拿出个小组准备的直径是10cm、15cm、20cm的圆。完成下列表格:
周长直径周长/直径(保留两位小数)
(2)探究圆的定义?直径不同的圆,周长与直径的比值一样吗?这个比值叫做什么?用哪一个字母表示?读作什么?在通常计算时∏值取多少?圆周率是哪个国家的数学家谁最早提出的?
(3)根据被除数=除数X商,如果用字母C表示周长,d表示圆的直径,圆周长的计算公式怎样表示?
三、当堂训练、检查自学效果
1、求下面各圆的'周长
2、一个喷水池直径是5m,他的周长是多少米?
四、订正学生做题过程中出现的错误(后教)
学生在求圆的周长时,不能正确的应用公式,这时我会告诉学生,已知半径求圆的周长用C=2∏r,已知直径求圆的周长,用C=∏d。
五、本课小结
闭上眼睛想一想,通过本课的学习你有哪些收获?学生在回忆梳理的过程中再现了本课的知识点。
六、课堂作业、当堂批改(不少于10分钟)
1、用C表示圆的周长,d表示圆的直径,r表示圆的半径,圆的周长计算公式可写作()或()。
2、求下面各圆的周长
4
3、完成下列表格
半径rcm直径dcmCcm
4
1.2
12.56
4、已知圆的直径是20m求圆的面积?
附板书设计:圆的周长
1、圆的周长的定义
2、圆周率的定义即表示方法
3、圆周长的计算公式C=∏d或C=2∏r
《圆的周长》教学设计5
新课标人教版六年级上册第62~64页。
【教学目标】
1、通过小组合作探究,实际测量计算理解圆周率的意义,推导出圆周长的计算公式。
2、能利用圆的周长的计算公式解决一些简单的数学问题。
3、培养学生的观察、比较、分析、综合及动手操作能力。
4、通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程的理解,并掌握圆的周长计算方法。
难点:理解圆周率的意义。
【教具、学具】
课件、软尺、直尺、绳子、圆形。
【教学过程】
课前交流:请同学们唱一首歌。
(设计意图:为了创设一种和谐宽松的课堂氛围,让学生在愉快的环境中探索知识,养成一种良好的课前准备的学习习惯。)
一、创设情景,生成问题
国王要与阿凡提比赛谁的小毛驴跑得快,通过观看比赛图,国王的小花驴跑的是圆形轨迹,阿凡提的小灰驴则跑的是方形的轨迹,结果国王的小花驴先到达终点,阿凡提觉得比赛不公平,引导学生说出比赛不公平的原因是比赛的路程不同,它们比赛的路程刚好就是正方形和圆形的周长,要相比较正方形和圆形的周长。
(设计意图:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
让学生说一说常用的长度单位有哪些。宰出示圆形纸片,边比划边启发学生说出圆的周长的含义。那么这个圆形纸片的周长是多少呢?你们能不能想办法求出这个图形的周长呢?今天就来探究圆的周长的计算方法。板书课题:圆的周长。
(设计意图:由于学生已经学习了周长的一般性概念,因此应已学知识为基础。即让学生在充分理解了“封闭图形一周的长度是这个图形的周长”这个一般性概念之后,再去理解圆的周长这个特殊概念。)
二、探索交流,解决问题。
师:下面请同学们把准备好的圆拿出来,圆的周长指的是哪一部分的长,同桌互相比划一下。
师:同桌想一想圆的周长怎样测量?
师:把你的好方法在小组内交流一下。
(设计意图:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
师:老师发现很多小组已经找到方法了,哪个小组愿意到前边来把你们的方法告诉大家?
(设计意图:通过实物操作,向其它小组的同学展示本小组的结果,增强学生的自信)
生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长。
师:这种方法还真不错!为了让大家看的更清楚些,老师把这种方法重新演示一遍。
师演示(线绕圆一周,然后量出线的长度。)
师:还有其他的方法吗?
生:我们小组是直接用米尺绕圆一周,就可以读出圆的周长。
师:大家觉得这种方法怎么样?是呀,这个方法太简单了,我们为他们鼓掌。
生:我们小组把圆沿着尺子滚动一周,这一周的距离就是圆的周长。
师:这个办法也很妙!其他同学还有要补充的吗?
生:应该在圆上先做个记号,滚动时记号要和尺子的零刻度对齐。
师:你的想法可真不简单!
师演示(圆沿着尺子滚动一周):圆沿着尺子滚动一周的距离就是圆的周长。
师:刚才大家找到了这么多求圆的周长的好的方法。那我们能不能用这些方法测量出圆形体育场的一周有多长,或者把地球近似地看成一个球,绕赤道一周的长度是多少呢?因此有些圆的周长没办法用绕线和滚动的方法测量出来。那咱们能一起想办法找到一种更简便更科学的方法来解决这个问题吗?
生:能!
师:正方形的周长和什么有关?
生:周长是边长的4倍,师:那么圆的周长和什么有关系呢?
生:圆的直径越长圆越大,所以周长就越长。
师:那周长和直径有怎样的关系呢?
(设计意图:学生已经知道了周长是边长的4倍,接着提出圆的周长与什么有关,这样设计唤醒了原有的知识经验:圆的半径(直径)决定圆的大小。再接下来猜想、探索、验证就显得自然顺畅,并能激发学生的求知欲。)
师:同学们用自己手中的工具测量出了它们的周长和直径,再请同学们动手计算一下周长与直径的比值是多少?点名汇报结果。
师:现在大家通过填写表格发现了什么?
生:在测量中发现,大小不同的圆的周长是不同的。
师:既然不同的圆的'大小是不同的,那么圆的大小是由什么决定的?
生:是由半径(或直径)唯一决定的。
师:圆的周长与直径或半径之间到底存在着怎样的关系?
生:每组算的结果不大一样,但都是3点多。
师:老师这里有一根绳子和一个圆,用来探究圆的周长和直径的关系,可是老师忘记带直尺了,于是老师就把这根绳子平均分成若干段,每段的长度都和圆的直径相等,然后绕圆一周,发现圆的周长刚好是三个半径多一点,老师探究的结果和你们计算的结果一样吗?
生:一样。
师:这是怎么回事呢?其实早就有人研究出任意一个圆的周长和这个圆直径的比值是一个固定不变的数,我们把这个数叫做圆周率,用字母π来表示,它是一个无限不循环小数,它的值是:π=3.1415926535……,我们在计算时,一般只取它的近似值,即π≈3.14。
师:同学们你知道吗?我们古代的数学家在圆周率的计算上可是有着辉煌的成绩的,谁来讲给同学们听?
我们有这么伟大的数学家,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计意图:挖掘圆周率蕴含的教育价值,让学生了解自古以来,人类对圆周率的研究历程,感受数学文化的魅力。激发研究数学的兴趣,通过学生讲故事渗透爱国主义思想。)
师:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
师:从表中我们可以看出圆的周长÷直径=圆周率
(板书:圆的周长=π×直径)。
如果用字母c表示圆的周长,d表示圆的直径,那么圆的周长计算公式是c=πd(板书),再根据直径和半径的关系得到c=2πr (板书)。
生读:c=πd c=2πr
师:从计算公式可以看出,要求圆的周长必须要知道哪些条件?
生:圆的直径或半径。
(设计意图:通过填写观察表格,使每一个学生都有了动手操作及计算得出结果的成功体验。而且把不同的圆的有关数据,通过表格的形式呈现出来,更有利于学生观察、比较,初步发现圆的周长总是直径的3倍多一些。周长和直径的比值是一个固定值,引出圆周率的概念,突破了教学的难点。)
三、回顾整理,反思提升。
这节课我们通过猜想、探索、验证得出了圆的周长计算公式,你们精彩的表现让老师收获了很多快乐。你有什么收获呢?
(1)今天我学习了圆的周长的知识。我知道圆周率是( )和( )的比值,它用字母( )表示。
(2)我还知道圆的周长总是直径的( )倍。已知圆的直径就可以用公式( )求周长;已知圆的半径就可以用公式( )求周长。
教师《圆的周长》教学设计 篇3【教学内容】苏教版九年义务教育六年制小学数学第十一册”圆的周长”
【教学目的】
1、使学生理解圆周率的意义,理解掌握圆周长公式,并能正确计算圆的周长。
2、培养学生分析、综合、抽象、概括和解决简单的实际问题的能力。
3、学生进行辩证唯物主义“实践第一”观点的启蒙教育及热爱祖国的教育。
【教学重点】掌握圆周长的计算方法
【教学难点】理解圆周率的意义
【教具、学具准备】
教具:录像、投影片、3个大小不等的圆、分别在一端系上红、白小球体的绳子各一根。
学具:圆、直尺、小绳。
【教学过程】
1、导入新课。
(1)认识圆的周长。
教师出示一张正方形的纸片。提问:这是什么图形?它的周长指的是哪部分?它的周长和边长有什么关系?
(师出示正方形的图形。)
学生指着图形回答上述问题。
生:这是一个正方形的图形,这四条边的长度的总和就是它的周长。周长是边长的4倍。
教师当场把这张正方形的纸对折、再对折,以两条折线的交点为圆心画了一个最大的圆。提问:圆的周长指的是哪部分?谁能指一指。
师:通过手摸正方形周长和圆的周长,你发现了什么?
生:正方形的周长是由4条直直的线段组成的;圆的周长是一条封闭的曲线。
老师请同学们闭眼睛想象,圆的周长展开后会出现一个什么图形呢?
老师一边显示图象一边讲述:
以这点为圆心,以这条线段为半径画圆。通过圆心并且两端都在圆上的线段叫做直径。现在将圆的周长展开,请观察出现了什么情况。
圆的周长展开后变成了一条线段。
(2)揭示课题。
师:同学们认识了圆,知道了半径、直径和周长,学会了测量和计算圆的半径和直径,那么圆的周长能不能测量和计算呢?这节课我们就来一起研究圆的周长的计算。
(板书课题:圆的周长计算)
【评:为激发学生积极主动地学习圆周长的计算,教师注意了必要的复习铺垫,并引导学生研究正方形的周长与边长的关系,这就为学习圆的周长计算做好了知识上的准备和心理上的准备。渗透了要求圆的周长也需从研究圆周长与直径的关系入手】
2、学习新知。
(1)学生动手实验,测量圆的周长。
全班同学分学习小组,分别测量手中三个大小不等的圆的周长。并报出测量后的数据。
(学生测量圆的周长,并板书测量的结果。)
师:你们是怎么测量出圆的周长的呢?
生1:把圆放在直尺边上滚动一圈,这一圈的长度就是圆的周长。
师:你是用滚动的方法测量出圆的周长。如果这里有一个很大的圆形水池,让你测量它的周长,能用这样的方法把圆形水池立起来滚动吗?
(老师边说边做手势,同学们笑了。)
生1:不能。
师:还有什么别的方法测量圆的周长吗?
生2:我用绳子在圆的周围绕一圈,再量一量绳子的长度,也就是圆的周长。
教师轻轻地拿起一端拴有小白球的线绳,在空中旋转,使小白球滑过的轨迹形成一个圆。
教师边演示边提问:要想求这个圆的周长,你还能用绳子绕一圈吗?
生2:(不好意思地摇摇头)不能了。
师:看来用滚动的方法或是绕绳的方法可以测量出一些圆的周长,但是实践证明是有局限性的。那么,今天我们能来能探索一种求圆的周长的普遍规律呢?
【评:从滚动圆测量、绕圆周测量,到空中的小球所经的轨迹画出的圆不好测量,不断的设疑、激疑,导出要探索一种求圆周长的规律,使学生感到很有必要,诱发学生产生强烈的求知欲。】
(2)根据实验结果,探索规律。
教师将一端分别系上小球(一个白球、一个红球)的两条绳子同时在空中旋转,使两个小球经过的轨迹形成大小不同的两个圆。
师:这两个圆有什么不同?
生:两个圆的周长长短不同。
师:圆的周长由什么决定的呢?
生:是由老师手上的那条绳子决定的。绳子短,周长短;绳子长,周长长。
师:请认真观察,(教师再演示)这条绳子是这个圆的什么?
生:是这个圆的半径。
师:半径和什么有关系?圆的周长又和什么有关系呢?
生:半径和直径有关系。圆的周长和半径有关系,也就是和直径有关系。
师:圆的周长和直径有什么关系呢?下面请同学们动手测量你手中那些圆的直径。
(学生测量圆的直径)
随着学生报数,教师板书:
圆的周长圆的直径
9厘米多一些3厘米
31厘米多一些 10厘米
47厘米多一些 15厘米
教师请同学们观察、计算、讨论圆的周长和直径的关系。
(学生讨论,教师行间指导、集中发言)
生1:我发现这个小圆的周长是它的直径的3倍。
师:整3倍吗?
生1:不,3倍多一些。
生2:我发现第二个圆的周长里包含着3个直径的长度,还多一点。
生3:我发现第三个圆的周长也是它的直径的3倍多一些
(板书:3倍多一些)
师:同学们发现的这个规律是否具有普遍性呢?咱们一起来验证一下。
滚动法验证:
绳绕法验证:
投影显示验证:
直径:
周长:
师:同学们通过观察、操作、计算所发现的规律是正确的,是具有普遍性的。圆的周长是它的直径的3倍多一些,到底多多少呢?第一个发现这个规律的人是谁呢?
投影出示祖冲之的画像并配乐朗诵。
“早在一千四百多年以前,我国古代著名的数学家祖冲之,就精密地计算出圆的周长是它直径的3.1415926---3.1415927倍之间。这是当时世界上算得最精确的数值----圆周率。祖冲之的发现比外国科学家早一千多年,一千多年是一个何等漫长的时间啊!为了纪念他,前苏联科学家把月球上的一个环形山命名为祖冲之山。这是我们中华民族的骄傲)
同学们的眼睛湿润了。教师很激动地对大家说:“同学们,你们今天正是走了一番当年科学家发现发明的道路,很有可能未来的科学家就在你们中间。努力吧,同学们!数学中还有许多未知项等待你们去发现、去探索。”
教师继续讲到:刚才我们讲到了圆周率是什么?(引导学生看书)圆的周长总是直径长度的三倍多一些,这个倍数是个固定的数,我们把它叫做圆周率。
(板书:圆周率)
圆周率用字母π表示。π是一个无限不循环小数。计算时根据需要取它的近似值。一般取两位小数:3.14。
师:如果知道了圆的半径或直径,你们能求出它的周长吗?这个字母公式会写吗?
(学生独立思考、讨论、看书)
板书公式:C =πd
C =2πr
【评:首先通过教师演示揭示圆周长有的长些、有的短些,然后引导学生观察、测量、计算、讨论圆周长与什么有关系?有怎样的关系?让学生充分感知,又反复加以验证,使学生对于圆周率的概念确信无疑。这一段教学设计符合儿童的认识规律,有利于教学重点的突出。结合认识圆周率对于学生进行热爱中华民族的教育,也是恰到好处的】
3、反馈练习、加深理解。
请同学们把开始测量的三个圆的周长用公式准确计算出来。
(学生计算)
师:通过用测量、计算两种不同的方法算出圆周长,你有什么发现?
生:计算比测量要准确、方便、迅速。
(1)根据条件,求下面各圆的周长(单位:分米)
(学生计算,得出结果)
师:为什么题目中给的数据都是10,可计算出的圆周长却不同呢?
生:题目中给出的数据是10,但第一个图中的10表示直径,第二个图中的10表示半径。因此选择的计算公式就不同。给了直径,可直接和圆周率相乘,得出周长。给了半径,就要先乘2,再和圆周率相乘,得出周长。
【评:教师注意运用比较的方法进行教学。给了两个数据,一个直径是10分米,一个半径是10分米,让学生计算后区分不同。这样可以弄清知识间的联系与区别,有利于揭示本质属性,能有效地促进知识技能的正迁移。】
(2)判断正误。(出示反馈卡)
① 圆周长是它的直径的3.14倍()
② 圆周率就是圆周长除以它直径的商 ()
③ C =2π r =πd()
④ 圆周率与直径的长短无关 ()
⑤ π> 3.14()
⑥ 半圆的周长就是圆周长的一半()
一部分同学认为第⑥题是错误的。
教师举起了表示半圆的模型,(如图)
请判断失误的同学们亲自指一指半圆的周长。
在操作中,同学们恍然大悟,发现半圆的周长
比圆的周长的一半多了一条直径的长度。
(3)抢答。直接说出各题的结果。(单位:厘米)
① d =1 C =
② r =5 C =
③ C =6.28d =r =
(同学们争先恐后地报出自己算出的答案)
(4)运用新知识,解决实际问题。
教师口述:在一个金色的秋天,我和同学们来到天坛公园秋游,一进门就看见一棵粗大的古树,我问大家:你们有什么办法可以测量到这棵大树截面的直径?当时张伟同学脱口而出:好办,把大树横着锯开,用直尺测量一下就可以了。
同学们听了这个故事,摇摇头,表示不赞赏。
一位同学站了起来:“张伟锯古树该罚款了。”
教师补充了一句:“是啊,你们有什么比张伟更好的办法吗?”
教室里热闹起来,同学们七嘴八舌地议论着……
生1:“不用锯树,只要用绳子测量一下大树截面的周长,再除以圆周率就可以计算出大树截面的直径。”
(同学们笑了,鼓起掌来,表示赞赏。)
(四)课堂小结:
师:这节课学习了什么?请打开书----看书。
教师再一次请同学们观察黑板上贴着的三个圆,提出问题:“这三个圆什么在变,什么始终没变?”
师:同学们通过圆的直径、周长变化的现象,看到了圆周率始终不变的实质。同学们能经常用这样的观点去观察和分析问题,会越来越聪明的。
(板书:变----不变)
师:下课的铃声就要响了,最后我留一个问题,请有兴趣的同学可以试一试。
画一个周长是12.56厘米的圆。怎样画?
【简评:这节课的设计体现以下几个特点:
1、教学目的明确,能从知识、能力、思想品德教育三个方面综合考虑,明确、具体,教学过程很好地完成了教学要求。
2、能深刻领会教材的编写意图,能准确地把握教材的重点和难点,知识的呈现过程层次清楚,能组织学生积极投入到获取知识的思维过程当中来。教学要求符合学生实际,环节紧凑,密度得当。
3、教学方法既灵活多样又讲求实效。注意发挥教师的主导作用和学生的主体作用。教学程序设计比较精细,或由旧知识导入新知识,或教师演示直观教具,学生不止一次地操作学具,向学生提供丰富的感性材料,创设情境,并能适时地引导学生抽象概括,培养思维能力。整节课始终注意以教师的情和意,语言的生动、形象,富有逻辑性来吸引学生,注意让学生循序渐进地感知,不断完善学生的认知结构。
4、能精心设问,问题能从多角度提出,正反向进行。问题提得准,导向性强,设问有开放性,语速恰当,给学生留有思考的时间。
5、练习的安排计划性强,有针对性,先安排了一些巩固新知的基本练习,又安排了判断练习,口算练习,解决实际问题的练习。练习有层次,形式多样,学生愿意做、愿意学。安排操作性练习,能启发学生的创造,培养学生解决实际问题的能力。】
《圆的周长》教学设计6
一、教学内容:
圆的周长计算方法与应用
二、教学目的:
1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作能力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
三、教学重点:
1.理解圆周率的意义。
2.推导出圆的周长的计算公式并能够正确计算。
四、教学难点:
理解圆周率的意义。
五、教学过程:
(一)创设情境,引入新课
1、用多媒体出示:龟兔赛跑路线图。
第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?
2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?
b.什么是圆的周长?请你摸一摸你手中圆的周长。
3、师:今天我们就来研究圆的周长。并出示课题。
(二)引导探究,学习新知
1.推导圆的周长公式
(1)学生讨论
a.正方形的周长跟什么有关系?有什么关系?
b.你认为圆的周长和什么有关系?
(2)猜测
看图后讨论:圆的周长大约是直径的几倍?为什么?
小结:通过观察大家都已经注意到了圆的周长肯定是直径的2~4倍,那到底是多少倍呢?你有什么好办法吗?
(3)动手操作
a.以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。师:拿出老师为你们每个小组准备的学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。
师:看哪一组配合好,速度快,较精确。开始!
b.汇报小结。
师:用实物投影展示整理的表格。
师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大约是直径的三倍多一些?
2.认识圆周率、介绍祖冲之
(1)我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示。π≈3.14
(2)介绍祖冲之
3.归纳圆的周长公式
(1)怎样求周长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?
师板书:C=πd
(2)圆的周长还可以怎样求?由于d=2r则:C=2πr。师板书:C=2πr
师问:圆的周长分别是直径与半径的几倍?
(三)巩固应用,强化新知
1.求下面各圆的周长。
1)d=2米2)d=1.5厘米
2.求下面各圆的周长。
1)r=6分米2)r=1.5厘米
3.判断题
(1)π=3.14 ( )
(2)计算圆的周长必须知道圆的直径( )
(3)只要知道圆的半径或直径,就可以求圆的周长。 ( )
4.选择题
(1)较大的圆的圆周率( )较小的圆的圆周率。
a大于b小于c等于
(2)半圆的周长( )圆周长。
a大于b小于c等于
5.课堂反馈
你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?
6.实践操作
请同学们,画一个周长是12.56厘米的圆,先以小组为单位讨论:画多大?如何画?再操作。
(四)课堂总结,梳理知识
师:通过这堂课的学习,你有什么收获?你还有什么问题吗?
反思:
“圆的周长”是周长概念的一次扩展。为了使学生对周长的概念有一个较为完整的认识,让学生在获取知识的同时学会思考、学会合作。为此设计了两个以学生自主活动为主的学习环节。
1.动手实践,探究圆周长的测量方法。
怎样测量圆的周长呢?首先让学生在教师提供的学习材料——圆片、细绳、直尺中开动脑筋自主地选择解决问题的材料,接着让学生亲自动手实践,探究解决问题的方法。
当学生通过“看——想——做——悟”等一系列活动,探究出解决问题的.方法后,抑制不住兴奋的心情,在小组内自觉地展示交流。同时,教师需要引导学生在全班交流中形成共识。
学生在动手、动脑、动口,调动多种器官参与学习的过程中,不仅自己求出了问题的答案,体验了自主获取知识的快乐,而且在探究的过程中,加深了对圆的周长概念的理解,并为以后探究圆的周长公式打下基础。
2.探究圆周长与直径的关系,寻找圆周长的计算方法。
在这个活动中,让学生按合作学习的要求,以小组合作学习为主要形式来测量大小不等的圆的周长和直径的长度,并通过计算求出周长除以直径的数值,进行汇报、总结。
学生在经历了观察、思考、合作的学习过程,会发现无论大圆、小圆,其周长除以它的直径的商总是三倍多一些的特征后,教师及时引导学生实现知识的迁移。
在测量、计算、比较中,使学生理解了圆周率是周长除以直径的商,而且从知识的深度和广度上体验了周长与直径的关系。
《圆的周长》教学设计7
教学内容
北师大版小学数学六年级上册教材第9页~第11页。
课前思考
本节课的教学目标非常明确:利用学具合作探究圆的周长的测量方法,发现圆的周长与它的直径之间的关系,从而推导出圆的周长计算公式;能运用公式解决一些简单的数学问题。以此教学目标为指导,为了能抓牢学生的注意力,激发起他们主动参与课堂活动的兴趣,课堂上李老师组织学生积极利用圆片、卷尺、绳子等学具进行探究,使教、学具在数学课堂上的作用得以体现。
课堂写真
(教师利用课件出示两种自行车图片,学生观察。)
师:你会选择哪一辆参加我校组织的自行车比赛呢?
生:第一辆。
师:为什么选择第一辆自行车呢?
生:因为它的轮子大,跑得快。
师:为什么它跑得快呢?
生:因为它滚一圈的长度长。
师:对!轮子大,滚一圈的长度也就长。我们把车轮滚动一圈的长度就叫作它的周长。那么这两款自行车车轮的周长到底是多少呢?谁能帮助我们解决这个问题?
生:我们可以通过测量的方法得到车轮的周长呀!
师:你的反应很快。那么如何测量呢?这是需要我们思考的问题!下面就请同学们小组合作,利用小圆片及其他学具探究圆的周长吧!
(学生开始讨论,操作学具,2分钟后,每个小组都有了各自的测量方法。)
[分析] 李老师从学生的生活出发,利用多媒体课件出示自行车的车轮让学生首先明确“圆的周长”的意义,接着引导学生思考如何得到圆的周长。在学生想到测量方法时,李老师又鼓励学生用手中的学具探究测量圆的周长的方法。在她的主导作用下,学生积极主动地参与了学习,给这节课开了一个好头。
师:哪个小组愿意先来晒一晒你们的测量方法?
生:我们第一小组先来。我们组是在圆形纸片的边缘标一个起点,然后把它放在直尺上,让这个起点对准零刻度,最后把纸片沿直尺滚动一圈,就得到它的周长了。
师:嗯!这是个不错的方法,但请同学们思考:如果有一个很大的圆形游泳池,要测量它的周长,我们能把它放在直尺上滚动一圈吗?
[分析] 让学生操作学具展示自己的测量方法,锻炼他们的动手能力,有了学具的参与,学生用事实说明了问题。同时也促进了他们的合作能力和语言表达能力。接着,李老师又提出了新的问题,为后面的课程做铺垫。
生:下面请听一听我们第二小组的方法。我们小组是用绳子绕圆片一周得到它的周长,所以我们也可以用绳子绕圆形游泳池一周,再测量出绳子的长度,不就测量出了圆形游泳池的周长了吗?
(说完,大家为第二小组的同学们鼓起了掌。)
师:大家对你们的方法已经做出了肯定,这个测量方法的确很棒!
(此时,第二小组同学们的脸上露出了得意的笑容,就在这时,老师拿出一根绳子,绳子的一端系着一个小球,接着将绳子在空中旋转起来。)
师:同学们请看,小球走过的路线是什么形状呢?
生:是一个圆形。
(这时,教师转向第二组的同学并提问。)
师:如果想得到这个圆的周长,还能用你们小组的`这种绕线测量的方法吗?
生:不能。
[分析] 第二小组同学们利用绳子、直尺等学具创设了“绕线法”解决了问题后,李老师再次提出了质疑,这次的问题更难解决,也让同学们进一步意识到测量方法的局限性。
师:第三小组的同学,你们有什么好方法?
(第三小组派代表发言。)
生:我们可以把系有小球的绳子放在纸片上,固定一端,拉紧绳子,旋转一周,用笔描画出小球的运动路线,然后将这个圆剪下来,再利用之前同学们说的滚动或者绕线的方法测量出这个圆的周长,不就解决了这个问题吗?
(同学们听完后,恍然大悟,都夸赞第三小组的同学聪明,此时的他们心里美滋滋的。)
师:你们组的想法很有创意,但大家有没有想过,这个小球的运动方式就好比公园里巨大的摩天轮,如果要得到摩天轮的周长,这个方法还可行吗?
生:不可行。
师:看来,用测量的方法得到圆的周长具有一定的局限性,而且测量中也存在误差,数据不够精确,我们还要像研究长方形或正方形的周长那样,找到一个科学普遍的公式来计算圆的周长。
生:圆的周长与什么有关?有怎样的关系?
师:请利用你们手中的学具合作探究吧!
(同学们通过操作学具,经历测量、填表、计算、观察等活动,终于发现了圆的周长是它的直径的3倍多一些。再结合教材推导出了圆的周长计算公式,心中的成就感和自豪感油然而生。)
[分析] 同学们带着心中的疑惑去探究,目的明确,再加上小组合作,合理的分工,充分利用学具,让每一个学生都有事可干,教室里气氛活跃而井然有序。经过学生自己的努力,他们终于发现了圆的周长与它的直径之间的3倍多一些的关系,也推导出了圆的周长计算公式。
课后解读
数学课堂中应用教具、学具,能锻炼学生的动手操作能力和思维能力,使他们对知识有更深刻的认识和理解。本节课李老师就是利用教具学具紧紧抓住了学生们的注意力,让他们通过一系列的操作活动积极主动地获取了新知,让学生在“玩”中学、“学”中玩,使大家印象中枯燥的数学课变得活跃起来。
《圆的周长》教学设计8
【教学资料】
课本第5--7页例1、例2。完成相应的“做一做”题目和部分练习
【教学目标】
1、使学生理解圆周率的好处,理解和掌握圆的周长计算公式,并能解决简单的实际问题
2、培养学生操作、计算潜力,在学生操作、计算的过程中发现规律,培养学生抽象概括潜力。
3、培养学生创新思维潜力。
4、透过“圆的直径、周长的变化,圆周率不变”的探索,对学生渗透辩证唯物主义的启蒙教育。结合我古代数学家祖冲之的故事,对学生进行爱祖国、爱中华民族的教育。
【教学重点】
探索圆的周长公式
【教学难点】
对圆周率π的理解
【学具准备】
每四个学生一组
1、直径1厘米、2厘米、3厘米、4厘米的圆片各一个
2、直尺一把
3、细绳一条、两根长31.4厘米的细铁丝
4、实验表格
5、计算器
【教具准备】
实物投影议、电脑
【教学过程】
一、设疑导入、培养创新意识
1、电脑演示:有甲、乙两学生争论。
甲说:“我脑袋大。”
乙说:“我脑袋比你在大。”
师:“如果你是裁判员应如何评判,两人才能都服气?”
2、学生四人小组讨论
请学生说一说自己的方法
甲生:“看谁的脑袋大。”
师:“如果看不出来怎样办?”
乙生:“把头放入水中,看谁的水面上升得高谁的头就大。”
师:“十分好!很有创意。”
丙生:“用绳绕头一周,测量绳的长度。”
师:“你的办法很有新意,我们的头近似球体,横切面近似于圆,你用绳子测的长度(线测方法),就是脑袋的横切面的周长,谁的周长大谁的头就大。这天我们共同学习“圆的周长”。师板书圆的周长的定义。
二、动手尝试操作,探求新知
1、动手尝试操作
(1)组织学生四人小组用绳测量直径是1厘米和2厘米的小圆的周长,并把测量的结果填入实验表格。
圆的周长c(厘米)
直径d(厘米)
周长÷直径(c÷d)
1
2
3
4
(2)组织学生讨论,除了用绳作测量工具外,还有什么办法能测出圆的周长。
讨论后得出:也能够把圆放在尺上滚动一周,来直接量出它的周长(滚动方法测量),把圆对折进行测量(折叠法)。
(3)用滚动的方法测出直径是3厘米、4厘米的圆的周长,并填好实验表格。
2、探索规律
(1)师将填好的实验表格在实物投影议上出示。
学生观察、分析、讨论得出:圆的周长和直径变化,比值不变,都是3倍多一点。
(2)思想教育
师:“任何圆的周长和直径的比值都是3倍多一点,是一个固定不变的数。我们把圆的周长和直径的比值叫做圆周率,圆周率用字母π(读pai)来表示。其实,约20xx年前,中国的古代数学著作《周髀算经》中就有:“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,我国有一位伟大的数学家、天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值计算精确到6位小数的人。他的这一项伟大成就比国外数学家得出这样的精确数值的时间至少早一千年。π是个无限不循环小数,在计算过程中通常取3.14。
教师用绳的一端系一粉笔头,手拿另一端,绕动绳粉笔头在空中“画出一圈”。
师:“像这个圆你能用线测和滚动的方法量出它的周长吗?”
生:“不能”。
师:“这说明用线测和滚动的方法测量圆的周长是有局限的。那么,我们能不能找出圆周长的计算方法呢?”
(3)推导圆周长公式
师:“从公式看出,明白什么条件能够求出圆周长?”
生:“直径、半径。”
师:“如果圆的周长已知,怎样才能求出圆的半径或直径?”
三、圆周长公式的应用(尝试练习)
1、出示例1
学生尝试练习,找学生板演,师生共同讲评。
2、完成例1下面的“做一做”。
3、出示例2
学生尝试练习,找学生板演,师生共同讲评。
4、完成例2下面的“做一做”题目。
5、第8页练习二的1、2、3题。
四、再次尝试操作、第二次创新
1、求出人脑袋的横切面的半径
(1)利用桌面上现有的测量工具,透过计算,怎样求出你脑袋的半径?
(2)四人一组互相合作,动手测量,计算时可利用计算器。
(3)将运算的结果对全班公布,并说明理由。
2周长相等的正方形、圆,谁的面积大
(1)组织学生将长为31.4厘米的铁丝折成正方形和圆形,比一比谁的面积大?
师将折好的'正方形和圆形在实物投影仪上显示。得出结论“圆的面积较大。”
(2)四人小组讨论:为什么饭店的桌面一般都设计成圆形的,而课桌设计成长方形的桌面。把讨论的结果讲给同学们听。
五、全课小结
1、这天我们学习了什么资料?
2、经过这节课的学习,你有什么收获?
3、师:“这天我们透过测量学习了圆的周长的求法,而且我们还明白了周长相等的正方形和圆,圆的面积较大。下节课我们将学习如何求圆的面积”。
六、作业
第9页练习二中的第9、10、11题。
板书设计
圆的周长
围成圆的曲线的长叫圆的周长
c=πdc=2πr
例1、一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
(生板演)3.14×0.95
=2.983
=2.98(米)
答:这张圆桌面的周长约是2.98米。
例2、一个圆形水池,周长是37.68米。它的直径是多少米?
(生板演)解:设水池的直径是X米。
3.14×X=37.68
X=12
或:37.68÷3.14=12(米)
答:水池的直径是12米。
《圆的周长》教学设计9
教学资料:
圆的周长(小学数学九年制义务教材第十一册).
教学目的:
1.让学生明白什么是圆的周长.
2.理解圆周率的好处.
3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.
教学重点:
推导圆的周长计算公式.
教学难点:
理解圆周率的好处.
教具学具:
1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.
2.电脑软件及演示教具.
教学过程:
一、复习:
上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?
二、导入:
这节课我们继续研究圆的周长(板书课题).
1.指幻灯图片(长方形正方形三角形)问:这些是什么图形?谁能指出它的周长?
2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?
问:什么是周长?
出示:平面上封闭图形一周的长度,就是它的周长。
想一想:什么叫元的周长
出示:围成圆的曲线的长叫做圆的周长。
3.你能测量出这个圆的周长吗?(能)
4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?
5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?
回答:不能.
想一想圆的周长都能够用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?这天我们就来研究这个问题.
三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和哪些部分有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?
四、学生动手测量、教师巡视指导.
五、统计测量结果.
观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?
六、电脑出示:
(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁明白我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书63页,默读“其实”到“π≈3.14”.以及“你明白吗?”
七、看书后回答问题:
1.什么叫圆周率?
2.你明白是谁把圆周率的值精确到7位小数吗?
师:早在一千五百年前祖冲之就已经把圆周率精确到了7位小数了,他的发现比外国数学家早一千多年,一千多年是何等漫长的时间啊!为了纪念他,科学家把月球上的一座环形山脉命名为祖冲之山,这是我们中华民族的骄傲!
3.明白了圆周率,还需明白什么条件就能够计算圆的周长?
4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式就应怎样表示?
此刻你们已经掌握了圆的周长的计算公式,下面你能根据所学的知识决定下面的说法是否正确?
决定:
1、π=3.14()
2、只要明白圆的直径或者半径,就能够明白圆的周长()
3、大圆的圆周率比小圆的圆周率大。()
求下面圆的周长:(见课件)
师:十分不错,大家基本掌握了圆的周长的计算方法,我们能够用这些知识来解决生活中的一些问题,下面看例题1:
八、出示例1:
一辆自行车车轮的'半径是33厘米。车轮滚动一周,自行车前进多少米?小明家离学校一千米,骑车从家到学校,轮子C大约转了多少圈(π取3.14,得数保留两位小数。)
请同学们想一想:车轮滚动一周的距离实际指的是什么?
解:c=0.33单位:米
c=2πr1000÷2=500(圈)
=2x3.14×0.33
答:骑车从家到学校,轮子大约转了500圈。
=207.24(cm)
≈2(米)
答:车轮滚动一周约前进2米.
九、课堂练习:
(一)应用题:
1.一张圆桌的直径是0.95米。这张圆桌的周长是多少米?
2.摩天轮的半径是5米,坐着它转动一周,大约转过多少米?
3.汽车轮胎的半径是0.3米,它滚动1圈前进多少米?滚动1000圈前进多少米
(二)选取填空:
1、车轮滚动一周,前进的距离是求车轮的()
A.半径B.直径C.周长
2、圆的周长是直径的()倍。
πC.3
3、大圆的周长除以直径的商()小圆的周长除以直径的商。
A.大于B.小于C.等于
十.思考:已知圆的周长,如何求它的半径或直径呢?
圆的周长=直径×圆周率
直径=圆的周长÷圆周率
半径=圆的周长÷圆周率÷2
《圆的周长》教学设计10
一、教学目标:
1.知识目标:在具体的情境中,结合已有的知识经验认识什么是圆的周长。
2.能力目标:通过测量和计算,了解圆的周长与直径的比为定值,推出圆的周长计算公式,并会运用公式解决现实问题。
3.情感目标:在观察、实验、猜想、验证等活动中,渗透解决问题的一般方法,进一步展学生的转化策略和推理能力;结合圆周率的学习,对学生进行爱国主义教育。
二、教学重、难点:
重点:推导并总结出圆周长的计算公式。
难点:深入理解圆周率的意义。
三、教学准备:
电脑课件、一元硬币、茶叶筒或易拉罐、圆形硬板、纸杯、直尺、水彩笔、细线、小组测量记录表、计算器、剪刀、三角板
四、教学过程:
(一)、创设情境,引起猜想:
1.复习长方形、正方形周长公式。讨论正方形周长与其边长的关系:
长方形周长=(长+宽)×2正方形周长=边长×4教学反思:应温故知新,注意知识点掌握的连贯性,同时为讲解圆的周长做铺垫。
2.激发兴趣
出示课件:同学们,我们已经认识了美丽的图形圆,什么是圆的周长?周长和圆的直径有什么关系呢?
(1)我们的村长在卖村里的树的时候,他用手拃一拃树的周长,就能知道树的直径,估计出树的体积,他是怎样算出直径的呢?同学们想知道吗?今天我们就来探究一下,看看会有什么收获。
(2)看这是圜丘坛俗称祭天台,及细观察,共有三层。上层直径30米,中层50米,下层70米。你发现了什么信息?根据这些信息你能提出什么问题?
3、认识圆的周长
圆的周长又指的是什么意思?(围成圆的曲线的长)出示课件
从准备的.一元硬币、茶叶筒、易拉罐、纸杯、圆形硬板等物品中找出一个圆形来,并指出这些圆的周长。
4.讨论正方形周长与其边长的关系
(1)根据已学知识总结正方形的周长总是边长的几倍?
出示课件:正方形周长=边长×4
正方形周长÷边长=4(固定值)
(2)那么圆的周长与什么有关系呢?
5.讨论圆周长的测量方法
(1)讨论方法:刚才我们已经解决了正方形周长的问题,可以测量再计算;而圆的周长呢?各小组同学选出你手中的一个圆形物品来试一试,测量圆的周长,看看你们有哪些好的方法?
(2)汇报交流总结:
①“绳绕法”——用细线缠绕实物圆一周并打开,然后再把绸带拉直测量长度;
②“滚动法”——把实物圆沿直尺滚动一周,数出直尺上的刻度差——还可以先用水彩笔在硬币的圆周长上涂上颜色,然后将硬币在纸上沿直尺滚动一周,测量纸上留下的痕迹的长度;
③“剪圆”——先用剪刀沿着纸杯圆口剪下一条,剪得越细越好,然后测量纸条的长度;
(3)小结各种测量方法:把曲线化成直线进行测量是我们数学中常用的方法。
(4)创设冲突,体会测量的局限性
刚才大屏幕上圜(yuán)丘坛有三个圆,这三个圆的周长还能用刚才的方法进行实际测量吗?(不能)那怎么办呢?有没有一种更为简单的方法呢?
(5)明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。出示课件:圆周长的计算方法6.合理猜想,强化主体:
(1)我们能不能像求正方形周长那样找到求圆周长的一般方法呢?正方形的周长与它的边长有关,而且周长总是边长的4倍;你认为圆的周长与它的什么有关?(半径、直径)向大家说一说你是怎么想的?
(2)正方形的周长总是边长的4倍,再看这幅图,出示小黑板,猜猜看,圆的周长大概应该是直径的几倍?说明道理:(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
(3)小结并继续设疑:通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?出示课件:圆周长÷直径=?
老师请各小组讨论:要想研究圆的周长与直径的倍数关系需要做哪些工作?根据学生的回答老师出示探究建议:
①测量圆的周长和直径;
②记录数据;
③进行计算;
④得出结论。
(二)实际动手,发现规律:
(1)明确要求:
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,每组同学可以从桌上物品中选出2-3个圆形进行测量,把数据和结论填入表格里,组长记录并计算,其他组员测量,最终求出一个平均值。
(2)学生动手操作,教师巡视指导。
(3)集体反馈数据(选取3~4组实验结果)
2.发现规律,初步认识圆周率
(1)看了几组同学的测算结果,你有什么发现?
(2)虽然倍数不大一样,但周长大多数是直径的几倍?刚才同学们已经对大小不同的圆进行了比较准确的测算,能够得出一个什么结论?
出示课件:三倍多一些。
3.介绍祖冲之,认识圆周率
(1)到底是三倍多多少呢?早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,而这个值就是圆周率,知道他叫什么吗?请同学们看一段资料:
出示关于圆周率的资料。
(2)看后激励:同学们今天自己动手也发现了这一规律,老师相信同学当中将来也会产生像祖冲之一样伟大的科学家。
(3)了解误差
我们将为我们班有像祖冲之一样伟大的科学家而感到骄傲,可不知同学们想过没有,为什么我们现在的测算结果都不够精确呢?那是因为测量和计算过程中存在着误差:
如:测量误差、读数误差、尺子刻度不一致、细线弹性不一致等等,通过这段文字资料你能确定圆周率的值了吗?圆周率是一个无限不循环小数,用希腊字母π表示,实际计算中π取近似值3.14。
(1)一辆自行车车轮的直径是0.6米。车轮滚动一周,自行车前进多少米?
(2)摩天轮的半径是5米,坐着它转动一周,大约在空中转过多少米?
(3)一个木桩的横截面周长是37.68厘米。它的直径是多少厘米?(四)、课内小结,扎实掌握
(1)通过今天的学习,你有什么收获?
(2)现在知道老村长是怎么求出树的直径了吗?
(五)、课外引申,拓展思维
出示课件:小明的妈妈在自家的墙根下建了一个花坛(如图)。你能计算出花坛的周长吗?
《圆的周长》教学设计11
教学目标:
1.通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。
2.通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。
3.在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。
教学重点:能正确、熟练地进行圆周长和面积的计算。
教学难点:从探究活动过程中去发现圆与正方形之间的关系。
教学准备:课件,学具。
教学过程:
一、复习旧知,梳理体系
直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)
教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?
小组合作,让同学们把所学的知识整理一下,然后进行汇报。
汇报交流,课件出示相关内容。
(1)圆的认识:
圆心O:决定圆的位置;
直径d:决定圆的大小;
半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;
圆是轴对称图形,有无数条对称轴。
(2)圆的周长:
围成圆的曲线的长度叫圆的周长。
圆周率:周长与直径的比,是个无限不循环小数。
圆周长的计算:。
(3)圆的面积:
由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。
圆面积计算:。
圆环的面积:。
【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。
二、基本练习,整合知识
教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?
1.说说下面各题的最简整数比:
(1)一个圆的'半径和直径的比是多少?(1:2)
(2)一个圆的周长和直径的比是多少?(:1)
(3)两个圆的半径分别是2 cm和3 cm,,它们的直径比是多少?(2:3)
周长的比是多少?(2:3)
面积的比是多少?(4:9)
【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。
2.一个公园是圆形布局,半径长1 km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41 km。(课件出示题目情境)
(1)这个公园的围墙有多长?
教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1 km,就能求出圆的周长是6.28 km。)
(2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2 km。)
(3)如果公园里有一个半径为0.2 km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)
(4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)
【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。
三、探究学习,培养能力
1.用三张同样大小的正方白铁皮(边长是1.8 m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)
(1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)
(2)剪完圆后,哪张白铁皮剩下的废料多些?
教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)
(3)根据以上的计算,你发现了什么?
【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。
四、回顾总结,交流收获
教师:说说这节课我们学习了什么?你有什么收获或问题?
【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。
《圆的周长》教学设计12
教学内容
苏教版《义务教育课程标准实验教科书数学》五年级(下册)第98~99页例4、例5以及相应的“试一试”“练一练”,练习十八第1~4题。
教学目标
1、使学生通过绕一绕、滚一滚等活动,自主探索圆的周长与直径的倍数关系。知道圆周率的含义,并能推导出圆的周长公式,学会运用公式解决简单的求圆周长的实际问题。
2、使学生在活动中培养初步的动手操作能力和空间观念。
3、结合圆周率的教学,使学生感受数学的文化价值,激发学习数学的兴趣。
教学过程
一、操作导入
谈话引入,并指名说说怎样测量圆的直径。
每个同学拿出事先准备好的三个圆形物体(圆形铁环、一元硬币、塑料胶带或其他任意一个圆)。
学生独立测量圆的直径,比一比谁量得最精确。
组织交流。
[思考:量直径是上一节课的内容。在教学新知之前进行复习,意图有两点:一是因为直径与周长的关系是本节课的主要研究内容,量直径能为研究圆周率和推导圆的周长公式服务;二是让学生练习比较精确地测量直径,为接下来比较精确地测量圆的周长做必要的准备。]
二、揭示课题
谈话:今天这节课我们一起来研究圆的周长。(板书课题:圆的周长)
三、自主探索
1、出示圆形铁环。
谈话:这是一个用铁丝围成的圆,谁上来指一指这个圆的周长?(学生指出圆的周长)同桌讨论一下,什么是圆的周长?(引导学生概括圆的周长的含义)
提问:你能量出这个铁丝围成的圆的周长吗?
学生动手尝试测量。(可能会想到把铁丝剪开、拉直,再测量铁丝的长。)
指名介绍方法,并上台进行测量演示。
2、出示一元硬币。
提问:你能测量这枚硬币的周长吗?
指名说说方法,学生动手测量。
3、猜测联系。
提问:对于刚才这几种测量圆周长的方法,你有何评价?
谈话:回忆一下,我们以前是怎样求长方形、正方形的周长的?
引导:是啊,用绕线法和滚圆法测量圆的周长比较麻烦,测量的结果也不够准确,我们应该寻找更简便的计算圆周长的方法。那么,圆的周长与它的.什么有关系呢?(与直径的长短有关)
追问:圆的周长与它的直径之间可能有怎样的关系呢?(学生提出各种猜想,也可能会提出圆的周长等于直径的3、14倍)
谈话:大家能提出不同的猜想,这很好!不过猜想只是猜想,圆的周长与直径到底有什么关系,还需要我们进一步研究与验证。
4、研究验证。
出示活动要求:
(1)每个同学选择一个圆形物体,分别测量它的直径和周长,并计算圆的周长除以直径的商。
(2)把你们小组测量与计算的结果整理在下面的表格里(表格略)。
学生活动后,以小组为单位,组织汇报。
提问:通过对实验结果的分析,你有什么发现?
小结:其实,圆的周长总是直径的3倍多一些,而且这个倍数是一个固定不变的数。我们把圆的周长除以直径的商称为圆周率。一般情况下,人们用字母π表示圆周率。它是一个无限不循环小数,它的值等于3.1415926……为了计算方便,我们取它的近似值3.14。(板书:圆周率π)
谈话:关于圆周率还有一段值得我们骄傲的历史呢!请同学们打开书本,读一读第120页下面的“你知道吗”。
提问:读了这段介绍,你知道了什么,有什么感想?还想知道些什么?
提问:为什么我们研究的结果和圆周率的实际值有一定的误差?
[思考:量铁丝围成的圆、一元硬币、塑料胶带等圆形物体的周长,是看似简单、重复的操作,但实际上不断激起了学生思维的浪花。第一次量铁丝围成的圆的周长,几乎所有的学生都能想到将铁丝围成的圆剪开、拉直成一条线段再测量,在操作中充分感受了“化曲为直”的数学思想。量一元硬币的周长,则不能直接剪开、拉直,而必须采用绕线法或滚圆法,这在引导学生灵活解决问题的同时,又使学生感受到实际测量得到周长的方法并不方便,从而产生探究圆周长计算公式的心理需求。在此基础上,再让学生分组自由选择圆形物体测量周长,探究圆的周长和直径的关系,激发了学生参与学习活动的积极性。]
5、推导公式。
提问:根据圆周率的意义,怎样求圆的周长?(板书:圆的周长=圆周率×直径)
提问:如果用C表示圆的周长,怎样用字母表示圆周长的计算公式呢?(板书:C=πd)
谈话:你能运用圆周长的计算公式解决一些实际问题吗?
出示“试一试”。
学生独立解决后,组织反馈。
四、练习巩固
1、判断下面的说法是否正确。
(1)圆周率等于3.14。
(2)圆的周长总是直径的π倍。
(3)一个半圆形的周长是这个圆周长的一半。
学生判断后,让学生说一说自己是怎
样想的。
2、一个圆形木桶的外直径是4.8分米,在它的外面加一道铁箍,这道铁箍长多少米?(接头处忽略不计)
让学生说一说题目的意思,再独立解答。
3、地球赤道的半径约是6278千米,绕赤道走一圈有多少千米?
先让学生估计地球赤道的周长,再独立计算。
五、课堂总结(略)。
《圆的周长》教学设计13
教学目标:
1、使学生认识圆的周长,理解圆周率的意义,掌握圆的周长计算公式,能正确地计算圆的周长,解决与圆的周长有关的简单实际问题。
2、培养学生初步地观察和动手操作的能力。
3、培养学生的探究意识,感受数学与现实生活的联系,增强民族自豪感。
教学重点:
推导圆的周长计算公式、
教学难点:
理解圆周率的意义
教具学具:
1、学生准备圆形实物模型,直径为4厘米、2厘米、3厘米圆片各一个,线,直尺,计算器、
2、电脑课件,投影仪。
教学过程:
一、激趣导入。
师:在体育场两只可爱的小蜜蜂飞行比赛,同学们想不想去看一看?
出示两个场地。(正方形场地、圆形场地)
师:这两个场地南北东西一样长,两只蜜蜂谁飞的距离长?(师点击幻灯片2)
预设生:第一只。
预设生:第二只。
学生可能产生疑惑。
师引导:比谁飞的距离长其实就是比什么?
生:比周长。
你能解决吗?
生:不能。
师:为什么?
生:正方形的边长可以知道。但圆的周长不会求。
师:什么是正方形的周长?
生:边长乘以4、
师:圆的周长是什么呢?那么我们这一节课就来研究这个问题。
板书:圆的周长。(点击幻灯片3)
二、认识圆的周长。
师:你能说出这个圆的周长吗?让学生指一指。(再点击幻灯片3)
老师再指圆的周长。
师:下面拿出你准备的圆形实物用手摸一摸它的周长。
学生上台演示。(老师提供一个大的圆形实物让学生演示)
师:你能说说圆的周长是什么?
生说:师板书圆的周长定义。
师:刚才我们也已经知道圆的周长定义也摸周长了。那怎样求出它的周长?
下面学生小组动手操作。并上台展示。
(师点击幻灯片4、5)演示刚才求圆周长的两种方法。绕线法、滚动法。
点击幻灯片6你用什么方法测圆的周长呢?
生:绕线法、滚动法。
不能测,学生有疑问。
师:我们用绕线法、滚动法可以测出一些圆的周长,但实践证明存在局限性,我们怎样求圆的周长呢?
师:圆的大小与什么有关?
生:半径。
生:直径。
师:那么圆的周长到底与什么有关系呢?
下面拿出你准备的圆形实物测量,把实验报告单认真填好。
小组讨论,动手操作。教师巡视。
三、理解圆周率。
师:圆的周长到底与什么有关系呢?
生:直径
师:什么关系?哪个小组愿意上台展示?
最后学生得出结论:周长是直径的三倍多一些。
师演示三倍多一些。(点击幻灯片7、8)、
师:怎样求圆的周长?用三倍多一些乘以直径?三倍多一些到底是多多少呢?
点击幻灯片9师说我们数学规定圆的周长除以直径的商是一个固定的数。我们把它叫做圆周率,用字母π表示。
π=3、141592653…
我们来看用这个数来乘以直径是很麻烦的。为了计算方便我们把它保留两位小数约等于3.14、
师:第一个发现这规律的是谁?
生:祖冲之。
(点击幻灯片10)、
四、归纳圆周长公式。
师:现在你能说出圆的周长公式吗?
生:圆的周长是直径的π倍、点击幻灯片11
师:用字母怎么表示?
生:C=πd
师:知道半径呢?
生:C=2πr
五、圆周长公式的运用。
师:会求圆的周长了吗?
生:会。
师:那我来考一考。点击幻灯片12、
学生做完。老师出示解。小组互查。做正确的举手。
学生自己做幻灯片13的题。做完上台展示。小组互查。
点击幻灯片14学生站起来回答。
点击幻灯片15、16学生说。
师:刚才我们会用直径、半径求圆的周长。现在如果知道圆的周长怎样求圆的直径呢?
点击幻灯片17、18做完上台展示。
点击幻灯片19回归小蜜蜂谁飞的路程长?
六、思维拓展。
七、教师寄语
八、小结:这节课你有什么收获?
教学反思:
为了调动学生的积极性先创设情境:两只可爱的小蜜蜂在体育场上进飞行比赛,同学们想不想看一看?在正方形场地,圆形场地飞行?他们东西南北一样长?谁飞行的路程长?”从而达到以旧有知识正方形的周长知识为铺垫引出圆周长知识,并让学生动手摸一摸圆的周长,初步感知周长是一周的长度,再动口说一说培养学生把思维过程转化为外部语言更增强对圆周长的感性认识了解之间的区别,前者是线段求和,后者是曲线求长,作好先导知识和心理上的准备。这节课的在学生对圆周长有了较强的感性认识后,体验及形象理解圆周长的意义。全课从创设现实生活情景导入新课,解决现实生活问题,渗透生活的理念。
动手实践,自主探索和合作交流是小学生学习数学的重要方式,而“猜想—验证”又是学生探索中常用的方法,这节课学生通过量、饶、滚找出周长和直径的倍数关系,用计数器把测量的周长和直径的.倍数关系算出,填写实验报告单,观察数据发现倍数关系,由“是——也是——还是——总是”最后概括为圆的周长总是直径的三倍多一些。”较强的数学思想方法得于渗透。学生在观察、操作、讨论、交流、猜测、归纳、分析和整理的过程中,周长公式的形成、获得、应用了然于心。提倡自主性“学生是教学活动的主体,教师成为教学活动的组织者、指导者、与参与者。”这一观念的确立,灌输的市场就大大削弱
学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。
在总结新课时再回到课的开始让学生判断谁飞行的路程长,为什么?在设计一题课后思考题,这样前有孕伏,后有照应,使整节课浑然一体,思维拓展既满足了学有余力学生的需求,又使教学意犹未尽。
不足之处:
1、学生说时,教师的耐心还不够,学生许多想法很好,但老师为了完成本课内容没有让学生都说一说。
《圆的周长》教学设计14
教学目的
1、理解圆周率的意义。
2、理解周长的概念,并掌握圆周长的计算公式和推导过程。
3、能运用公式求圆的周长或直径、半径。
重点
圆的周长计算公式的推导,能利用公式正确的计算。
难点
深入理解圆周率的意义及圆周长计算公式的推导。
教具:两个大小不同的圆、直尺一把、绳子一根、计算器和表格
一、复习导入(4分钟)
(一)出示菜板和圆桌图
师:
1、这两个都是什么平面图形
2、他们有什么不同?(圆的中心位置不同,圆心的位置也不同)
3、还有什么不同?(圆的大小不同,圆的半径不同)
4、也可以说是圆的直径不同。
(二)出示图与对话框
师:
1、这个叔叔说了什么?你来帮他读一读。(请一生读一读)
2、问:铁皮的长度实际上就是圆的什么?
预设:
1、圆一周额长度(这个长度就是圆的.周长)或
2、圆的周长。
二、新课教授
(一)活动一:摸圆的周长(3分钟)
师:
1、你知道圆的周长指的是哪吗?谁愿意到前面来指一指。
2、从哪里开始到哪里结束?
预设:
1、从这个地方开始,也在这里结束。
2、小结:起点和终点是同一点。
3、谁来说一说什么是圆的周长。(周长是几周?圆的周长是什么线?加手势)
4、围成圆的一周的曲线的长是圆的周长。
(二)活动二:周长的测量(4分钟)
师:
1、曲线图形的周长你会测量吗?(不会)
2、同方谈论一下,你想要怎样测量。
3、1生说绕绳法。他的方法听懂的举手。
预设:
1、听懂人多,师演示一下。
2、听懂的人少,找两个听懂的同学说一说,再询问,老师再演示一下。
师:
1、听懂测量方法的同学举手。现在我们一起来测量圆的周长,首先请个同学来读要求。(要求:动手测量圆的周长、直径,并将他们标注在你的圆上)拿出教具,按要求测量,开始。
2、教师观察指导。
(三)汇报演示(4分钟)
师:
1、拿出教具进行正确示范,并讲解注意事项。如:首先做好标记、然后紧贴圆绕等。
2、这个办法有什么缺点?(不精确会产生误差)
3、除了这个方法还有没有其他办法?
预设:
1、生能主动说出。
2、生不能主动说出。师可借用前页习题第3题找直径的第二种方法引导。(直尺的作用、三角板的作用?不需要三角板固定,测量曲线长度)
3、直尺能弯曲吗?前面绕绳法用绳子将就圆,这里用圆将就直尺就可以了,这就是滚动法。
师:
1、生自己操作
2、滚动法:先做一个记号,对准直尺零刻度线。紧贴着直尺滚动,记号再次指的刻度与零刻度的差就是圆的周长。
3、测量中英注意什么?有误差吗?听懂的同学举手。
4、师黑板上正确的演示,并引出“化曲为直”(板书:化曲为直)
(四)动图播放绕绳法和滚动法
1、找几位学生说出他测量出的圆的周长和圆的直径,教师板书作好记录。
2、至少要找7组数据,教师课前也要准备几组数据,共10组数据。
3、举起一大一小圆,问:这两个圆周长一样吗?(不一样)
4、为什么?(圆的大小或圆的半径、直径不一样)
三、猜想并探索(15分钟)
(一)猜想(4分钟)
1、直径不一样周长就不一样,那周长和直径有什么关系呢?
2、你想把周长和直径怎样比?(周长除以直径、周长减直径)
3、可以研究周长和直径吗?(不可以,每依据)
4、大数加大数,和还是大数,和小数没法比。周长乘直径呢?(同上)
5、用你想用的方法研究一下周长与直径的关系。
6、生在黑板上记录“周长÷直径”、或“周长减直径”。
(二)探索(8分钟)
1、通过表格你发现了什么?(周长÷直径的值都在三左右,基本上不会小于2或者大于4)特别有几组都是3.1多一点。
2、同学们能的到这个发现已经很不错了,千百年来我们伟大的科学家通过就算很多数据才得出周长÷直径是一个固定的数,等于3.1415926......它是一个无限不循环小数。
3、它叫圆周率,读作π,通常计算式取3.14。
(三)公式推导(3分钟)
1、由科学家们的发现我们就可以得到这样一个等式我们可以得出就是:圆的周长÷直径=圆周率(C÷d=π)
2、π是一个固定的数,现在你们能用计算的方法算圆的周长了吗?
3、C=πd或C=π×2r=2πr(只要知道半径或直径就可以计算圆的周长了)
四、巩固练习(10分钟)
(一)基础题一道
(二)能力提升两道
(三)拓展题一道
五、课后作业布置
《圆的周长》教学设计15
教学内容:新课标人教版六年级上册第四单元《圆的周长》
教学目标:
(1)使学生理解圆周率的含义,在体验圆周率的形成过程中,让学生发现、总结和运用求圆周长的计算方法。
(2)通过引导学生探究圆周率的形成过程,培养学生动手操作的能力和解决简单的实际问题的能力。
(3)培养学生勇于探索、积极思考、团结协作的良好行为习惯,让学生在学习中体验数学的价值。另外,通过对有关资料的了解,增强学生的民族自豪感。
教学重难点:
重点:理解圆周率的含义,推导和运用求圆周长的计算方法
难点:李洁圆周率的含义。
教学过程:
课前准备:学生4人一组,准备3个实物学具一个计算器,实验报告单、长尺子、绳子、毛线、皮尺、拴着小铁球的绳子
教学过程:
一、整体感知,提出问题。
1、复习周长的概念及学过的圆的相关知识。
师:三年级时我们认识了周长。封闭图形一周的长度,叫做周长。并且学习了长方形的正方形周长。回忆一下什么叫长方形的周长?怎么计算?
生:围成长方形四条边长的总和叫做长方形的周长。长方形的周长等于长加宽的和乘2.
师:正方形的周长呢?
生:围成正方形四条边长的总和叫做正方形的周长。正方形的周长等于边长乘4.
师:什么是圆的周长呢?谁愿意到前面来指一指这个圆的周长指的是哪儿?
生:上台演示周长
师:我们每个小组都准备了圆形,拿出来互相指一指,看一看哪儿是圆的周长!说完讨论:什么是圆的周长?
学生活动
师:谁愿意试着描述一下什么是圆的周长?
生:汇报
师:一起看一下什么是圆的周长!
演示:圆的周长(板书)
师:用心读一遍,读出关键字读一遍
2、提出问题
师:我们知道了什么是圆的周长。关于圆的周长,你能提出什么有价值的问题,作为我们这节课的学习目标。
预设:(1)如何测量圆的周长?
(2)圆的周长与什么有关?
(3)圆的周长可以计算出来吗?如果可以,公式是什么?
二、自主学习,解决问题。
师:同学们提出的问题非常有价值,下面请同学们利用手中的学具和老师为你们提供的资料来解决这些问题,问题解决:
(1)自己先想一想怎样测量圆的周长,想出来了,就和小组同学交流一下,看看谁的反方最好;如果想不出,就和小组同学请教一下。
(2)猜想一下,圆的周长可能与什么有关,并举例验证自己的说法是否正确。
(3)小组合作认真测量圆的周长,并准确计算,填写试验报告单,填写完成后,总结出试验的结论。
(4)根据试验结果,推导出圆的周长的计算方法。
学生自主学习,教师参与到小组合作中,进行针对性的指导。
三、汇报交流。
1、交流“如何测量圆的周长”?
师:首先我们来交流第一个问题:如何测量圆的周长?
生:我们小组用绳子绕圆一周,捏紧这两个正好连接的端点,再把线拉直,这两点之间绳子的长就是圆的周长。
生2:我们小组是在圆上取一点作个记号,并对准直尺的零刻度线,然后把圆沿直尺滚动,直到这一点又对准了直尺的另一刻度线,这时候圆就正好滚动一周。圆滚动一周的长就是圆片的周长。
师:大家非常了不起,虽然这些测量的方法不同,但是我们思考一下,这两种方法有没有共同的地方?
生: 都是把圆的周长这条曲线先变成直的线段再来测量。
师:把曲线间接变成一条线段来测量的,这种方法在数学学习中我们以后会经常用到,即化曲为直(电脑演示)
(学生汇报时,边说边上台演示。)
师:下面老师演示一下同学们想出的方法。
电脑演示学生想出的办法(第一是绕绳法第二是滚尺法)
2、交流“圆的周长与什么有关?”。
师: 黑板上这个圆的周长能用刚才的方法测量一下吗?(不能)
师:老师手中有一根拴着小球的绳子,老师转动绳子,仔细观察小球转动时走过所路线是什么图形?(圆形)
师:这个圆的周长你能用刚才的那些方法测量吗?(不能)
师:这说明测量的方法并不适合所有的圆,具有局限性,我们必须得找出一个能够普遍适用的求圆的周长的方法。我们接着交流第二个问题“圆的周长与什么有关?”,哪个小组解决了?
生:我们想圆的周长一定与圆的直径和半径有关。
师:能举例说明吗?
生:我们小组一共有四个圆, 的直径最短,它的周长就最短, 的直径最长,它的直径就最长,所以说,圆的周长一定与圆的直径有关。
师:他们小组说的真是有理有据。还有那个小组可以像他们一样,这样有理有据的来说明自己的看法呢?
生:我们小组 的直径最短,它的周长就最短, 的直径最长,它的'直径就最长,所以说,圆的周长一定与圆的直径有关。
师:你们说的和老师课件要演示的内容是一样的,老师真是太佩服你们了。
(屏幕上有三条长短不一的线段,如果我以这三条线段为直径画出三个圆,按你们的说法,哪个圆的周长最长?为什么?
生:答
师:看来圆的直径能够决定圆的大小,由此看来圆的周长与它的直径之间真的有关系,那到底是什么样的关系呢?
生:渎比值,总结圆的周长和直径的比值总是3点多。
师:哪个小组再来读读你们求得的比值。
生读。
师:也就是说,圆的周长总是圆的直径的3倍多一点。这难道是巧合吗?看一下屏幕上刚才的圆是不是也有这种关系!
师:看来无论是大圆还小圆,圆的周长总是直径的3倍多一些,换句话说:圆的周长与它的直径的比值总等于3点多(板书)。根据这个结论,你们推导出圆的周长怎么计算了吗?
3、交流“圆的周长计算方法。”
师:看了老师为大家准备的资料,一定能为大家推导圆周长的计算方法有所启发。
(1)介绍刘徽的《周髀算经》
师:大约20xx年前我国有一部数学著作叫《周毕算经》书中就有“周三径一”的说法,意思是圆的周长是直径的3倍,显然这种说法是不精确的,但这个结论在当时已经很了不起了。
师:为什么说周长是直径的3倍不精确呢?我们来看(出示)在这个圆内画了一个多边形,数一数它有几条边?
生答;六条
师:每条边长怎么样?
生答:相等。
师: 我们把边长相等的六边形叫正六边形,观察这个正六边形的边长与这个圆的半径有什么关系?(相等),那这个正六边形的周长是圆半径的几倍?(6倍)是圆直径的几倍?(3倍)也就是说这个正六边形周长与圆直径的比值是3,我们继续看,这个圆形的周长比这个正六边形的周长怎么样?我们刚才说过这个正六边形的周长与圆直径的比是3,那么这个圆周长与直径的比值要比3多一些,所以我们说周三径一的说法不精确,这个3是圆的周长与圆的直径比值的近似值。
师:如果我继续分,我把这个圆等分多少份?(十二)我把几个顶点用线段连接,会得到一个多少边形?(正十二边形)那这个正十二边形的周长也比圆的周长怎么样?(短)但和正六边形的周长比,它的周长更接近圆的周长,这个正十二边形与圆直径的比值为3.105852,这个比值比正六边形与圆直径的比值更接近于圆的周长与它直径的比值。
师:如果接下分,我把这个圆等分成二十四份,那我会得到一个多少边形?想像一下这个正二十四边形的周长就更怎么样了?(演示)
师:按照这个想法继续分,接下来我们会得到一个正四十八边形,那么它的周长会怎样?与圆直径的比值的会怎么样?
师:也就是说在圆内所做正多边形的边数越多,那它的周长是怎样?(更接近圆的周长,它的周长与圆直径的比值也就是更加更加更加接圆的周长与它直径的准确值了。
师:刚才我们所研究的这个方法就是1700年前我国著名数学家刘灰提出的用“割圆术求圆的周长和直径比值的方法,(2)介绍祖冲之和圆周率。
继刘徽之后在南北朝时期出现了一位伟大的天文学家和数学家,他沿用了刘灰的割圆术的方法,继续研究圆的周长与它直径的比值。
师;你知道他是谁吗?
出示祖冲之
师:老师读,同学们感受一下这个直径3.3333米的大圆有多大,每条边长只有多少?0.852毫米长,想像一下这个正多边形的周长已经和圆的周长怎样了?(非常接近了)然而祖冲之没有停住探究的脚步继续分割,到正24576边形,每条边与圆已经紧密的贴在一起了,正是由于祖冲之的这种不懈努力的精神,最终他算出了圆的周长与它直径的比值在3.1415926-3.1415927之间(板书)这个结论在当时世界上是独一无二的,比欧洲早了至少1000年,读到这大家有什么想说的吗?
师:我们真的应为此感到高兴和自豪,但人们对圆的周长与它直径的比值的研究还远远没有结束。随着数学技术的进一步发展和丰富,人们逐渐发现圆的周长与它直径的比值是一个固定不变的数,而且这个数是一个无限不循环小数。现在人们运用计算机能够算出小数点后上万亿位。
师:这个固定不变的数我们把它叫做圆周率。用字母π表示。指导书写π
师:π是一个无限不循环小数,如果参与到我们计算中会非常麻烦,所以实际应用中我们只取它的近似值π≈3.14.
师:现在我们知道了 π,如果已知这个圆的直径是10厘米(板书)讨论一下怎样求它的周长?
生叙述
师:为什么?
随生叙述板书:
圆的周长=圆的直径×圆周率
师:用字母怎样表示?(出示)
师:如果知道圆的半径是5厘米(板书),那它的周长呢?
随生叙述板书:c=2πr
师:为什么乘2?
生叙述
师:先算出2r,也就是d再和π相乘。
师:通过大家的努力我们完成了这节课的最终目标,得到了圆的周长计算公式是c=πd 和c=2πr,牢记这两个公式,以后大家会经常与它们打交道!
四、巩固练习,迁移应用。
师:学数学就是为了用数学,下面我们用新知识做一些练习!
1、计算小球所走路线的长。
师:下面我们回到课前的那道题:拿出小球,谁有思路能测量出它的周长?
绳子长50厘米
2、判断题
3、一张圆桌的直径是9分米。这张圆桌的周长是多少分米?
4、一个钟的分针长10厘米。这根分针的尖端转动一周所走的路程是多少厘米?
5、神州航天飞船绕地球飞行的轨迹是一个圆形,已知这个圆形的直径约是1.34千米,它飞一周所行的路程是多少千米?
6、一个圆形牛栏的半径是12米.要用多长的粗铁丝才能把牛栏围上三圈? (接头处忽略不计)
五、整体收获,收获整体。
师:这节课你有什么收获?
学生谈收获。
师:大家都不约而同的提到了圆周率,的确圆周率π它是一个极其驰名的数,它在各个领域发挥着它不可替代的作用。希望同学们多与π交朋友,把π真正的应用到我们的生活当中。
课下作业:用我们今天的知识,去测量、计算,看看旗杆的直径和周长各是多少?
【《圆的周长》教学设计】相关文章:
《圆的周长》教学设计03-15
《圆的周长》教学设计15篇(实用)11-14
《圆的周长》教学反思09-08
圆的周长教学反思07-20
圆的周长》教学反思11-03
《圆的周长》教学反思07-16
圆的周长教学反思09-04
《圆的周长》数学教学反思08-03
圆的周长教学反思【实用】09-01